
"0 TRZT Z- AND DI:PLA,:EMENT^ IN TWO THREE AND F)UR
LAY EE :TRUCTURE: :UBM U-CENTRE DE PECHEPCH-S DE
L' I NI : JPERIEUR INDU^TiIEL CATH(LIQU

F:E F VA :-.MELAERT ET AL 39 :EP 3' F , 29/1 ML



l~~lt 1. IN8iS0
- . u,

..3IoyRESOLUTIM TEST CHART





Is. REPORT SECURITY CLASSIFICATION I RESTRIC TIVE MARKINGS

2s. SECURITY. CLASSIFICATION AUTHORITY 3. DISTRIBUTION I AVAILABIUITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Appovd frpbi es;dsrbtounlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

R&D 5441-EN-01

6s. NAME OF PERFORMING ORGANIZATION I6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Centre de Recherches de (if I/cabit)
1' Institut Superisur Insustri I Catholique USARDSGV-K

6c. ADDRESS (City, State, end ZIP Cod.) 7b. ADDRESS (City, State, and ZIP Cd.)
Avenue de l'Hopital, 22 BOX 65
7000 Mn~fs, Belgium FPO NY 09510-1500

Ba. NAME OF FUNDING /SPONSORING ISb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION O (f applicable) DJ4-6M08

ii ~ ~ ~ ~ - b il,"AJ4-8--08
S.ADDRESS (City, State, and ZIP Cod*) 10. SOURCE OF FUNDING NUMBERS

P0 Box 631 PROGRAM IPROJECT ITA IWR UNIT
ELEMENT NO. 3NO. No. 1ACSSION NO.Vicksburg, HS 39180-0631 61102A I.L161102R5 01

11. TITLE (Include Security 040mfication)

(U) Stress and Displacements in Two, Three and Four Layered Structures Submitted to Flexibi

12. PERSONAL AUTHOR(S)

Acmputer program wrte inxWR 7ad rcre ndsetscmail iha
and dsaCmentI iODE lsf I .with PEI an anlysi o the mane &o W the y ber otainuedan

all teL Rq Ure th e ot ca ref r e l d co~m pete a usf p o ra : a p i t d

Ao pe program n ittin litrOT it7 andreordedon(~ dikte opail iha

20. DISTRISUTION /AVARILITY OF ASRACT 21. ABSTuRA SIUTY aASIPCATION
*UtCASIfD0INUWITD D2SAW AS APT OTIC UNISm Uclassified

22s. NAME Kf FAPNW 4141L2. ILIP Ob Area Co& L0110SYPAOI.
hily~~" C t141-402-7331-



* CENTRE DE RECHERCHES

* DE L' INSTITUT SUPERICUR INDUSTRIEL CATHOLIQUE

Du HAINAUT

STRESSES AND DISPLACEMENTS

IN TWO, THREE AND FOUR LAYERED STRUCTURES

SUBMITTED TO FLEXIBLE OR RIGID LOADS 9

Accewin For

NTIS CRA41
DTIC TAB (

CONTRACT DAJA45-86-M-0483 Urnamionu-d 0

FINAL REPORTCoe

By Dr. Ir. F. V-in Ceuwelmert

Head of the Depatment of Civil Engineering
Ing. F. Delamtols

Head of the Compute Division
Ir. L. Beaudoint

Assistat professor at the Computers Division

venu do l'HOpltal, 22 septemiber 30, 1987

BELGIUM-



STRESSES AND DISPLACEMENTS

IN TWO, THREE AND FOUR LAYERED SYSTEMS

WITH FIXED BOTTOM

Introduction

This report deals with the mathematical aspects required for the establishment

of a computer program able to calculate all stresses and displacements in two,

three and four layered systems.
The materials of the different layers may be isotropic or cross-anisotropic.

The interface conditions cover all the cases from full friction to full slip included

partial friction.

The bottom or the last layer is aidered to be fixed (no vertical deflections).
The loads can either be flexible either rigid.

The report is based on :

- existing material : isotropic multilayer theory (BURMISTER, 1943)

and anisotropic multilayer theory (VAN CAUWELAERT, 1983).

- original research work : interface conditions (fixed bottom, partial friction) and

satisfactory convergency, thus complete accuracy, at the surface and in the first

layer of the system, rigid load boundary condition.

This report contains three parts :

Part I : a theoretical outline wherin the basic equations are given, the specific

boundary conditions discussed and the particular numeral problems related

to the accuracy at the surface and in the first layer, solved.

Part 2 : the general mathematical analysis of the chosen numerical solution and

a description of the programs and their utilization.

Part 3 : (appendices) the detailled mathematical and algebrical analysimes for the

different considered cnes : Itotropic or anisotropic, full slip or not, flexible
or rigid load.

The programs ere written in FORTRAN 77 and run on IBM PC or all other ompa-

twe eupment.



PART 1. THE IULTILAYER SOLUTION

1.1 THE BASIC EQUATIONS AND FUNDAMENTAL HYPOTHESISES

The stresses and displacements in a multilayered system of homogeneous and

isotropic layers subjected to a uniform vertical toad applied over a circular

area are obtained from the following stress function:

J (-r).F(m)
S " 0 a) (Aiem z - Bie-mz + zCiem z - zDie') dm

Resulting stresses and displacements are given by:

Oz  " Jo(mr).F(m)|A1 a 2 e a+ i2e0 -U

- Cim(! - 2Mi - mz)e IM + Di*(1 - 20 + Uz)e~ IZ dm

S o(mr).F(s ) [AaeJ + Am2cm

+ C i m(l + 2P t + MiOeS D ti S(l + 211 SOO~~i l dul

+ I [Aim 2  + 2-ms

+Ciml+ms)e -D( -m)e(1 _ dm

e. - - Jo(r).F(u)[Cin .c ' - Dia.emI. 21.dm

J (r).F(M ) 2 m 2 -u

"o - r -. ...Aim + Aim e'+ Cim(l + us)e

-Dim( -mS)e" dmo

it " I (r).F(m) (A ime - ieUa

*AIR

* -
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In the case of a cross-anisotropic body the stress function is:

masmi -£
* 0 f J0(mr).F(m)/m [A 1 s - Bi e - w. + Cie z - Die zi dm

This stress function differs fundamentally from the isotropic case such that

the two cases must be handled different.

The stresses and displacements are given by

Oz = J: Jo(mr).F(m) [n (l + I1) (Am2e m  + Bm 2C )
(z 0 0e-S z  -s

+ ni(ni + d1) (C aine i + DiSime m2)) dm

a - f: Jo(r).F(m) [n1 (l + U 1) (A1 3Lma
z  + Bi 2 e- u z )

2
hhi- 2 (G~i2s~mz + i2-.iz dm

+ - ) (C1 . ei 2aai u + D 8 am e -81U )) dmn I - 13 11

+ JI(mr)F(m) 2 z+ 2 -mz+f ' mr - ni( + Ud ) At m e m + R i m a '0

2 •ima 2-ie
+ Csim + Dsme 1 dm

SUs -8 mas n U (I-n )

S- Jo( mr ) F ( u ) jCisim (u+)D 2ia + ie n1

J (S r).F(m) 2 ma

"fO ar [At m 0 m + a 1 .2 e0 + C Imtee

+ 'tmLm 2 n2(l+u1)dm

re -" J 1(m ).V( ) Ln*(l ) (Ai 2 e " - 2 ' m

. m .. ... .. ... ... .. • . .... .. . , w l .. . .• . . .
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+ n si(ni + 11) (Cism 2 e1 - isim e )] dm

W a s a I J (mr).F(m) Imz 2-mn)fo m - i M)(Aim em -B m

2

ns (n ) S 8 imz
+ ( i ±i ( Cs m 2 e - e )Jdm

(1 + Pi ) ni(n i + ) f MJ (mr).F(m) 2 mz 2 -mzj
± i 0~ a_______

u- Ei m [Almem +dim e

2simz 2-simz
+ Cism e + Dsim e 1 dm

where

ni W Evi/Ehi is the degree of anisotropy expressed as the ratio

between the vertical and the horizontal Youngs moduli

i -2
is the index of anisotropy.

• ni~ - 2i
i i

The anisotropic relations are established by the assumption that G the shear

rz

modulus in the vertical plane, is related to the other elastic constants by

(BARDEN, 1963; VAN CAUWELERT, 1983):

I + ni +.

Grzi Ei

and that v, Poissonus ratio in the horizontal plane, is related to Poisson's

ratio in the vertical plane by (EFTINIE, 1973; VAN CAUWELAERT, 1983):

iI
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1.2. THE BOUNDARY CONDITIONS

1.2.1 The Surface Conditions

The surface conditions are expressed by an adequate value of the Kernel

F(ma) in the stress function.

In the case of a uniform distributed load over a flexible area the kernel

is

F(m) - paJ1(ma)

where,

3, M Bessel function of the first kind of order one.

Indeed the expression for the vertical stress is then at the surface.

a Mpaf' J0(mr) J 1(ma) dm

- p for r < a

- p/2 for r - a

- o for r > a

In the case of a load distributed over a rigid area the kernel is

F(m) - sin (am)2

---a-

- . -TE BONDR CONDTION
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at the surface

I 2a f* Jo(mr) sin (am) dm

a 2 2-1/22 (a-r) for r < a

-0 for r > a

The total load

P 2w a 2
P =~ 0  rdrd8 = irpa

0 0 z

is equal to the applied load.

Also at the surface, the deflection is

(1- ) 2 J (W) sin (am)
W E paf o dm

1 0 m

E2( -Pa for r < aE i

The deflection is constant under the load.

1.2.2 The Interface Conditions.

Let as consider an n-layered system, consisting of (n-I) layers each hav-

ing a finite thickness supported by a semi-infinite body. There is associated

with each layer a stress function 0 (Ai Bi C D i) with 4 unknown parameters

such that the total of unknown parameters is 4n. Two of the parameters depend

on the loading surface conditions.

O - f(p) for r4 a
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rz

At infinite depth the stresses and displacements must vanish and thus A andn

C - o. As a result, there are 4 (n-i) parameters to be determined with 4

conditions at each interface. The four interface conditions are addressed by

imposing the conditions that the layers maintain contact and that the vertical

stresses (a ), shear stresses (Trz) and vertical displacements (w) at the

bottom of each layer and at the top of the underlying layer are equal. The

fourth interface condition, horizontal displacements (u), depends on the rela-

tive adhesion at the interface between the layers. The two extremes of adhen-

sion are

* full continuity, expressed by setting the horizontal displacement (u) on

each side of the interface equal.

* frictionless interface expressed by considering the interface as a prin-

cipal plan which results in the shear stresses equaling zero.

Partial adhesion can be expressed by:

u an Kui+
I

with

K e [O,inf]

When K - 1, one has full continuity

K * 1, one has partial continity

Zero friction then becomes a separate case, for which another program has to



be written.

1.2.3 The fixed bottom condition

The boundary conditions discussed in the previous paragraph indicate that the

last layer of the multilayer is considered as a semi-infinite body. One can

also consider the case of a multilayer system resting on a rigid body, such

that vertical displacements vanish at the contact face with the rigid body.

This problem shall be designated as the fixed bottom condition.

In addition, through the general solutions of the compatibility equation

in multilayer layer theory, we can get w=o at the desired depth and determine

the corresponding values of the parameters A n,B n,C n,D . In the isotropic

case, the parameter C must then be put equal to zero, while the parameter An n

is determined by condition w-o. In the anisotropic case, either the parameter

A must be zero when s<1, or the parameter C must be zero when s>1 Using cri-n n

teria that a minimum influence on the surface deflection is desireable and the

fact that conditions u = o and T = o have less physical sense, we retain therz

condition w = o as the most reasonable rigid bottom condition. An added bene-

fit of this selection is that the condition w-o is the easiest to account for

mathematically.

1.2.4 Influence of a fixed bottom condition on the numerical computation.

The deflection at the surface of a two layered system, without fixed bottom,

was solved by BURMISTER (1945)

20-M_2)_ Jo(mr).J (ma)w L fm 0 1
a E 1 0 m
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I + 4Kmhe - 2mh  KLe - 4 mh

1-(L + K + 4km2h2)e-2mh +m

where

( 3- 4 11) - n(3- 4 t )
n(3-4pI) (3-412) W n

E2 (1 + P )

E(1 + P2)

which, to avoid convergency problems during the numerical computation (see art

1.3.3), is written as:

2(l - 12) Jo(mr).J (ma)

1 0 d m

w = -pa- E 0o m d

-pa 2(1 - P 2) a J0 (mr).JI(ma)
1 m

i(L + K + 4Kmh + 4Kmh)e - 2KLe dm
4K22 e-2mh -4mh

1 - (L + K + 4Km2h2)e-2mh + KLe-4mh

=W 1 + W2

The deflection with depth on the axis of the loaded area is computed (r - 0,

J (mr) - 1) with E, M 1,000, E2 - 10,1P - P2 - 0.5 , a - 10, h - 10, p - 1.

The value of W1 is obtained analytically (WATSON, 1966)



r - - - __0_-K -10-

2(1 -2) J (ma) 2(1 2 ~ -. 1
w1 -I- E fo 1 -- dm - -pa E1 0.015

The value of W 2 is obtained by numerical integration for different values of

the integration parameter m:

m w 2  w

0.5 - 0.0582 - 0.0732

0.1 - 0.0580 - 0.0730

0.05 - 0.0580 - 0.0730

0.02 - 0.0580 - 0.0730

0.01 - 0.0580 - 0.0730

From this data, the deflection is correct for values of m-0.1 or smaller.

For the case of a rigid bottom at a depth H the value of the deflection at the

surface is given, with U - 0.5, by

W L pa J ( 1ma) 1 -2m

E m I + (1 + 2mH)e - 2mL

In this expression, for m - 0, the value of the integrand is equal to zero,

while in the previous case the value was:

2l 2
2(- p) I L + K - 2KL

E 2 1 - K - KL

.. . ... ... .. . ...... ... ....... ..... . .... .. ..... . . .. . .
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By splitting the integral the expression becomes:

3 (ma)
1.5pa I ma
E . f. d

1.5pa.- J1(ma) 2(1 + mH)e- H d
+ Jo -2mH dp o m 1 + (I + 2mH).e

With p - I , a - 10 and E - 1,000, the value of wt - - 0.015; the values of w 2

as a function of m, are computed

- with H - 3a

m w2  w

0.5 + 0.0036 - 0.0114

0.1 + 0.0033 - 0.0117

0.05 + 0.0032 - 0.0118

0.02 + 0.0032 - 0.0118

- with H - 1,O00a

0.5 + 0.0833 + 0.0683

0.1 + 0.0167 + 0.0017

0.05 + 0.0083 - 0.0067

0.02 + 0.0033 - 0.0117

0.01 + 0.0017 - 0.0133

For the case of a rigid bottom at H - 3a, the deflection is correct for values

of m - 0.05 or smaller but for the case of a rigid bottom H - 1,000a, the

• .... .. .. -. .. aI I
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deflection is not correct for all the values m. In the latter case (H =

lO00a), the problem is analogious to the semi-infinite layer case where w -

-0.01.

For a 0 0, the function f(m), in 1.5 pa/E fo F(s) da, is equal rero: but at a

value of a - 0+, the function is equal to its semi-infinite body value.

For comparison, the function is given below for various values of a for a

semi-infinite body and for a deep rigid bottom.

a f(m) semi-infinite f(m) fixed bottom

0.00 0.5 0

0.01 0.499999 0.499999

0.02 0.499975 0.499975

0.05 0.499844 0.499844

0.10 0.499375 0.499375

In choosing a value too high for a, an important part of the deflection is

neglected. The error is significant for the deep rigid bottom condition. As

a result, the rigid bottom case must be handled carefully, while an average

value of a - 0.1 gives correct results for the semi-infinite case.

1.3. PARTICULAR NMERI1CAL PROSMS

Several numerical problems arise when accuracy is desired, whatever the

location at which stresses and displacements are to be computed. In all cases

the problem of accuracy can only be solved where the relations for stresses

. m u . m ,,m m -J . m . ... ,,m. .. u
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and d:splacements are available, although partially, in closed form. Careful

attention to specific ters within the general expressions can help to improve

the accuracy of calculations.

1.3.1. The full slip interface condition

As was pointed out the zero friction or frictionaless interface condition

is a separate case that vill be addressed. The value of any stress or dis-

placement is obtained from one of the above wentioned relations. Let us con-

sider, for example, the vertical stress in the i-th layer of an isotropic

layer:

-mas
aoz Ma Pe Jo(mr).Jl(ma) [Aim2e + 4, Ii e'Z_ ( _2pimet

+ bi(l-2pi u,)e- i d.

Solution of this relation by numerical integration requires a value of a from

o to a value high enough to ensure convergency. In the case of n layers and

rigid bottom the parameters Al,Bi,Ci and Di must be determined for each value

of a based on boundary conditions and a system of (4n - 1) equations with (4n

- 1) unknowns.

Early solutions of this problem involved Inverting the matrix of the (4n

- 1) unknowns. However the inversion procedure leads, in some cases, to dif-

ficulties because of the presence of negative exponents tending to zero in the

determinat of the denominator. Other program haij tried to avoid the inver-

sion problem by using a trial. The procedure involves selecting values for I

and a and solving the system of (An - 1) equations. The solutin is

evaluated on how well the surface conditions are met. A second pair of values

4
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for I and D is selected and a new solution obtained procedure. Since then n

process Is linear, a good estimate of S. and D can be made by linear interpo-

lation. The difficulty lies in the appropriate choice of the values of 5 andn

Dn to ensure a numerically correct interpolation.

However, neither of the approaches are appropriate for all cases of a

frictionless interface. The vertical deflectin at the surface of a two layer,

the thickness of the first layer being H, is given by

+t) J (r.J(a) - 2
w" pa--f o Am 2 c -- BIfmeI

- [2-4UI +mH) CmUe - m - (2-4p,-mH) DlmemH] da

In the case of a frictionless interface, this relation becomes (BURMISTER,

1945)

2(1-u2) Jo(mr).Jl(ma)
W " - z I  .o a "

FeH Ft - (2F-1-2mH) - (l-F)e - 2 Hl d
[Fe2 + (2F-1)2uH - (l+2u2H 2 ) + (1-F)e

-2m t

where

(l-a ) n(l-ua ) K2 (1 + 'a1 )
a. 2 + and n- 2 0 1

.- 2 ') r 1 + t i2

For m - 0 the term in brackets becomes indefinite (0/0). This condition is

not singificant when computing stresses, because the product of the Bessel

functions is also zero at the origin (J 0 (ur).JI(as) 0 for m - 0.) However,

in the case of deflection the

a am.o

/A
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As a result it is necessary to determine the term in brackets for a - 0 and

thus to have it in a sufficiently closed form to be able to compute it.

1.3.2. Over and underflow problems

In the numerical integration procedure a varies from o to a value high

enough to ensure convergency. Stated differently, the integration procedure

can be stopped when the terms of the series become small enough so as not to

have an influence on the final result. The value of a to achieve convergence

may be as high as 20 to 30. The nature of convergency can be examined by con-

sidering the two-layer problem developed in the preceeding paragraph.

The parameters C and Di. from which the values of all the other parame-

ters can be deduced, are given by:

[(I-F+mH)emH (1-F)e -%H
1 Fe 2 + (2F-1).2mH - (1+2m 2H2) + (1-F)e -2mH

(Fe H - (F-mH)e- I
DI Fe2.1 + (2F-I).2H - (1+2m 2 H2) + (1-F)e - 2m t

These expressions can be examined in terms of H/a, where a is the radius of

the circular loaded area. At an H/a value of 5, a memory overflow will occur

for values of a above 10 as a result of such exponential terms such as e

2.1/a
and e . However, this problem can be overcome by dividing both numerator

26H
and denominator by a

Expressing the parameters in this form will result in an underflow. However,

most computers have a routine that sets variables subjected to underflow equal

to zero. If such a routine does not exist, it can be build into the program.

4r
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By using the transformed relations for C and DI convergency occurs quickly

and in a completely safe way (i.e. the numerators both tend to zero, while the

denominator tends to a constant F).

This can be obtained automatically for the two layer system by writing the

boundary conditions at the surface (z - -H) as follows:

A Ile-3mH + B1e-mH CI(1-2u, + mH)e-3mH + D-I(12uInmH)e-mH -2mH

1.3.3. Stresses and Displacements at the Surface

Convergency is slow when surface stresses and displacements are computed

because the parameters BI and DI content at this level a constant term in

their numerators.

We use the surface conditions to express B1 and DI in function of A and C1 .

Each relation is then split into two parts: an integral of a product of

Bessel functions which is computed analytically and an integral containing

only negative exponents in the numerator which ensure normal convergency. In

the case of a uniform distributed load the analytical integrals are:

1

rJ(mr) J (ma) dmm for r (a
0 ~ 1a

-o for r a a

-o for r > a

Jl(ms) 1 for ra
0: 'r  "r 2 a

- a2 for r > a
2r

Ji(mr) • dm .r for r < a

o S
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a
-~ for r < a

J (ua)
S om r )  du which is a special case

.Jl( ma)
For r - o, one has f - dm - I

o aJo(xr)-.J1 (ma)

For r - a, one has :o da - 2/wo

Jo(mr).JI (ua) 2
For r < a, one has fo dm F (1/2, - 1/2; 1; L)

a

where F is the hypergeometric function of GAUSS:

- (a) (b)
F(a, b; c; z) E n! (c)n  z

o n

(a)~ n- a (a+l) (a+2) ... (a+n-1)

(a) W 1
o

J (mr).J (ma) 20 1 a
For r>a =d - F (1/2, 1/2; 2; 1)

0 2r2
r

In the case of a rigid load the analytical integrals are:

o J0(mr) sin (m) do - (a2 2)-1/2 for r < a

- o for r > a
f: JI(ar)in(iM) d - - [a-(a 2-r2 )]1/2  for r < a

r

- for r > a
r

J1m) i (a 1 2 /21

i(ar ) .do -Lr [a-(a 2_r2)1/2 for r < a

a"- for r > a
r

o- ". dx. v/2 for r < a

*arctg [a (r 2a2)-1/ 2
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1.3.4 Accuracy in the First Layer

As with computation of stresses at the surface the numerical computation

of stresses in the first layer or near the surface converges slowly.

Again we express the parameters B1 and D1 , associated with small exponentials,

in function of the parameters A I and C and split the obtained relations in an

integral of a product of Bessel functions and an exponential (known as an

LIPSCHITZ-HANKEL integral) which has to be treated in a particular way and an

integral with normal numerical convergency.

Infinite LIPSCHITZ-HANKEL integrals can be transformed in finite and thus

integrable, integrals when the Bessel indices are identical.

In the case of a uniform distributed load, a general solution can be achieved

by considering the stresses and displacements in a semi-infinite body submit-

ted to a force P.

2
With P - pia

lim pa f M Jo(mr) J (ma) dm jf J(mr) dm
a0o

Thus we may write for example

p 0  (2v o f: p JO(vo) e dpdO dm

where P a ( 2+r -2ar cos 6)
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In this case

foJo(u) e d-mz ( 2z2 -1/2

so that the infinite integral

-mz
pa f Jo(mr) Jl(ma) e dm

is transformed in a finite integral

S f2w a p dp dO
2w [o [o (p2Z2 )1/2

One of the two integrals can be solved analytically. The required integrals

are:

pa f J(mr) J(ma) e dm - f 2z(a2_x 2) /2 dx
0a 0 1 2w -a (z2+X2+r2_2xr) (z 2+r 2 +a2 _2xr)1/2

a ~~2 2 2 1/2 d

pa f J (mr) J (ma) aze'~ -% ma (4Z fa 2z(a 2_x 2 d 1/2
pa 0o J1 ) J2w ) ue - J-a (z 2 +x 2 +r 2_2xr) (z2 +r2 +a 2_2xr)1/2

+ kfa 2z (a2-x ) / 2 dx
2w-a (z 2 +r 2+a 2-2xr) 3/2

(z 2+x2+r 2-2xr) (z2+r2+a2-2xr)3/2

a . 4z(r2+x -2rx) (a2-x2) 1/ 2 dx
2 w (-a (z +x +r -2xr) (z +r +a -2xr)

2222 2 2 2/ 2
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J (mr) J (ma) 2 2 2.1/2 2 21/2paI o - m ~ a a n (r -2xr+a +z ) + (a2-x)

paf e d f aIn (rdx
0 m 2w -a 2T - 2 2 1/2 22Z1/2(r -2xr+a +z2 (a -x )

and following LIEBSCHITZ-HANKEL integrals

pa I J(mr) J I(ma) a 2 fW____ sizd

e dmp sin8d
0 mr 11 o (z2+w2)2/2

2 2 2
with w - a +r -2arcos e

Jl(mr) J1(ma) 
2

Pa e- dm p - f 2Ir I2 in 2sOde
r W 0(z 2 +W 2 )3 /2 s

arz ___ _ '

pa JS J (mr) J (ma) mze-= dm 3 I2,w2 5/2 sin 2d8

In the case of a rigid loaa we expand either the Bessel function, J (mr)0

or JI(mr), either the sine function, sin (ma), depending on the relative

values of r and a, and solve the resulting series of integrals.

The required integrals are:

J (mr) sin(ma) e-az
(- d 20

if r>. .... 2 a 2n+ 1 F in+1/2,-n; 1; r 2

o (a Z ) Iz
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(-1) 2r r (n+1/21) F 2+~1.a
if r < a arc tg (a/z) + az F 2-lnn 3/21/2; -2

i r(1/2)nI (a 2+z 2) 12a +z2

Jo(mr) sin(ma) e-m z dm

I00
(-1) n l 2 n r2a n+3+F r ;1

if r >a E 2n+3 F 27 -- n1 2 2
0 2 22(z2+r 2)

Go (-l)n r 2n r (n+3/2) a2
if r < a 2a E 2 2)n + l F n+l, -n; 3/2; 22

o r(1/2) n! (a +z a +z

f J (mr) sin(ma) m e- mz dm=
00

fz2+r2 + 2z -r(_)n a2n l(nil) F 2n+3, -n-i; 1; r

z 2 +r2 )512 2n+3 F r 2 +z 2
(z2 +r 2 2

2(-1)n~ 2n r n- )21if r < a 4az 2  r 2 n+2 F n+2, -n; 3/2;-- a

0 ni r(1/2) (z 2+a2)
n+ 2  I a 2 +z2

JI(mr) sin(ma) em z

m

if ra2az rz n1 a 2n+3 r2if r > aaa +_ 2 n+ 3 F---,-nl; 2;r r(r2+z2/2 1 2 2 r +z

(r +z 2)

if r < a a (_,)n r r (n+3/2) F nil, -n; 3/2; 2

o (n+)! r(i/2) (z 2 +a2 ) ; a 2+z

J (mr) sin(ma) e -  dm =

. .- a 1
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if r(>na1 ( * .r 2n+3 r2
2n+3 F r-n; 2 r2+z 2

(r 2+z 2

2n r (n+3/2) a 2
if r (a 2 E r z(n2+z2)n+2 F n+2, -n; 3/2; a22

o n! r(1/2) (a a

Jl(mr) sin(ma) mz enz dm
0

S 2n+1

na 2n1r.z (2n+3) (ni+1) rn+ r
if r > a z 2n+ F 2n+5, -n; 2;

2n+5
(r +z )

raz (3z2  2 (-) r  (2n+3) r(n+3/2) a2

if r a 2 23 +2a 2 2+2 F n2, -n-1; 3/2; 22
(a+z) 1 n! (1/2) (a +z a +z

PART 2: NUMERICAL RESOLUTION OF A FOUR LAYER SYSTEM

2.1 THE MATHEMATICAL ANALYSIS

As shown in art 1.3.1, the mathematical analysis must be different

depending on the layer interface conditions.

2.1.1 Full or Partial Friction at the Interfaces

The case to be solved for first is full or partial friction at the inter-

faces. Boundary conditions for this case will be

- At the surface a - p

T 0
rz

- At each interface azi a z +
zi+ 1

rzi rzi+ 1
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W, =w
wi = wi+1
u i = )iui

where X is a factor for partial friction.

-At the bottom W = 0

A4 or C = 0 if rigid bottom

A4 = C4 = 0 if 4 - th layer is semi-infinite

Consider an isotropic four layer problem which will result in a system of

16 equations with 16 unknowns (Al, B1 ,....C 4, D4). This system of equations

is difficult to solve analytically in the same way that BURMISTER did for a

two and three layered system. Using the same approach results in mathematical

errors introduced in eliminating unknowns. As a result, it is necessary to

modify the analysis procedure to solve accurately the numerical problems

detailed in Part 1. The main objective of the approach is to obtain an

expression for each unknown parameter consisting of a numerator containing

negative exponents only and a denominator containing a constant term and nega-

tive exponents. During the integration procedure, when the variable tends to

infinity, the numerator will then tend to zero and the denominator to a con-

stant value. In the analysis the exponents must appear in close form. The

factors multiplying the exponents may then be expressed in a more comprehen-

sive form. Sequential steps in the mathematical analysis for a rigid bottom

are as follows.

First Step

Replace in the boundary equations of the third interface the parameters

A4 and C4 by their values obtained from the rigid bottom condition.
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Second Step

Write all the interface conditions in matrix form.

- At the surface MI (A1 B1 CI  D)T fi (I )T

where MI is a 2 x 4 matrix

- At the first interface MI(ABC = 1M2(A2 B2 C2 D )T

where M1 and M2 are 4 x 4 matrices
1 2

- At the second interface M3(A 2 B I C2 D 2
)T f 4(A3 B3 C3 DT3

)

where M3 and M4 are 4 x 4 matrices

-At the third interface M5 (A3 B3 C3 D3) = M6(B4 D4 )

where M is a 4 x 4
and M6 is a 4 x 2 matrix.

Third Step

Invert the matrices Mi, M3 and M5 .

The system becomes

MI (A B1 C1 D 1)T = (1 o)T

T -1T
(A1 B1 C D1) = M I .M2 (A 2 B 2 C2 D2 )

(A 2 B2 C2 D2)T= 31 .M4(A3 B3 C3 D3)T

(A B C D3 )T M11 M (B D ) T
A3 B3 C3  3 5*6 4 4

and finally

MId11 M 2 -M 3 . 4.15 .M6 (B 4 D 4) (1 0)

-I -I -IThe rodct .1 .2,M3 144..M5 .M6 is a 2 x 2 matrix, so that we can write
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21 2 4\

and solve the resulting system:

a2 2
Ba 2 2  2 1 *a

a11 - 2.12

D -a2 1

D4 = ali a22 -a a12

Utilizing the different matrix equations, we express then the other

parameters as functions of B4 and D 4  To obtain the exponents in close form,

the matrices are split in such a way that the exponents can be factored out of

the brackets. For example, in the isotropic case:

-1 1 x

- 1 4
1) [ e-X.M + e .MI

x -x
M2 = e .M2 1 +e 2

M3 4(1-12 ) [ e-Y.H31 + e Y.M3 ]

H3  4(l-Ij3 ) 31 32

M 4 e .M41+ e-YM42
______ -Z z

-1 13 e . 51 + e .M525  - -t--

M6  [ e .M6 1 + eZ.M6 2

where x = mh1

y = m(h1 + h 2 )

z - m(h I + h2 + h3

u - m(h I + h2 + h3 + 2h4 )

hi being the thickness of layer i.

The terms of all the matrices are in closed form and can be introduced as

- Am .



input values for the numerical procedure. The term ot the resulting products

are not expressed in closed form, however it is sufficient to know which

columns or rows of each matrix contain only zeros. In the final product

intermediate matrices disappear because they are identical zero. As a result,

those matrices preceeded by positive exponents vanish. Subsequently, the

values of all the unknown parameters except for the parameters B and D1 at

the surface, can be expressed in terms of a numerator with only negative

exponents and a denominator with a constant term and negative exponents.

At the surface, the values of the parameters B and D contain a constant

term in both the numerator and the denominator followed by negative exponents

which precludes obtaining satisfactory convergency. As an alternative, the

parameters B 1 and D 1 are expressed, utilizing the surface conditions, as a

function of the parameters AI and C1 . The resulting expression for a given

stress or displacement becomes:

a = pa fo JU(mr).JI(ma) I K + f (AI) + f2 (C) J dm

where K is a constant term and f (A ) and f2(C are functions of the parame-

ters A and CI which converge normally. Splitting the above relation into two

parts results in:

o1 M pa fa J0 (mr).J(ma). K dm

which can be solved analytically

a2 = pa fo J0 (mr).J(ma) [ fI(A ) + f2 (C1 ) I dm

which can be solved numerically.
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Near the surface the previous problem of B and D converging slowly

arises too. Therefore, utilizing the surface conditions, the expressions for

stresses and displacements are split into two parts. The first part, known as

a LIPSCHITZ-HANKEL integral (paragraph 1.3.4), is solved analytically and the

second part is solved numerically.

2.1.2 Full Slip at the First Two Interfaces and Full Friction at the Third

Interfaces

A different procedure must be used to mathematically solve a layered sys-

tem with frictionless conditions at some interfaces. The procedure described

in previous paragraphs cannot be applied here. The boundary conaitions for

the case of full slip for the four layer system are:

-At the surface a" p

T 0rz

- At the first two interfaces a a (1)
zi zi+i

Srzi (2)

Trzi+ 0 (3)

W, wi + (4)

- At the third interface a -z a zi+l

zi =  rzi+1

W, w i+

ui u i+ 1

-At the bottom w M o

A4 or C 4  o for a rigid bottom4
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The system of equationa at the first two interfaces cannot be expressed in

matrix form because two of the four equations are homogeneous.

Sequential steps in the mathematical analysis are as follows:

First step

Replace in the boundary equations of the third interface, the parameters

A4 and C4 by their values obtained from the rigid bottom condition.

Second Step

Write the boundary equations at the third interface (full friction) in

matrix form

T -I T
(A3 B3 C3 D3) a H5 M6(B4 D4)

Third Step

Using the surface conditions, express AI and B as a tunction ot C and

UI

(AI B1)T - M(C I D
)T

Using conditions (1) and (2) at the first interface replace AI and BI by their

values and solve the system by expressing CI and DI as a function of A2 ,

5 , C2, D2 -

T T
(CI D1) a MI (A2 B2 C 2 D2 )

Using condition (4) at the first interface, replace A,, Bib CI and DI by their

values expressed as functions of A2, B2, C2 , and D2. Using conditions (3) and

(4) at the first interface, express A2 and B2 as a function of C2 and D2
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(A2  )T . 2(C2 D2 T

Using condition (1) and (2) at the second interface, replace A and '2 by

their values and solve the system by expressing C2 and D2 as functions of

A3 , S3 , C3 D "
A 31' B3' 3 3*

(C 2 D2) T - K3(A3 B3 C3 D3)T

Using condition (4) at the second interface, replace A2, B2' C2, and D2 by

their values expressed as functions of A3, B39 C3 and D3. Conditions (3) and

(4) at the second interface are reduced to the following system

T T
H 4(A3 B3 C3 D3) = (K o)

where H4 is a 2 x 4 matrix and K a function of the integration variable.

Finally,

M4.M5 .M6(B4 D4 )
T - (K o)T

a system which can be solved as in previous paragraph.

The same procedure is also utilized to express all the unknown parameters as

functions of B4 and D4.

At this point a supplementary difficulty for the full slip case, regard-

ing the expression of the vertical deflection must be considered. The verti-

cal deflection is given by:

l+j1 J (mr).J I(ma)
w - pa 0 m ft(AiBICiDi) dm

For m -
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J (ar).J (ma)0 a
• 2

E-o

and

lim f (AB C D 0

Eno

which result in the above expression for the vertical deflection being unde-

fined. However, at the rigid bottom w-0 for all values of the integrating

parameter 2,, including m-o. Con'.equently,

At the bottom f 4(A4 B4 C4 D) o

At the third interface f 3(A3 B3 C3 D 3 ) f4 (A4 B4 C4 D )

At the second interface f 2(A2 B2 C2 D ) 2 f 3(A3 B3 C 3 D )

and, at the first interface f (Al B2 CI D ) f 2(A2 B2 C2 D )

Thus, in general for all layers f (A Bt C D i) - o for m - o.

Of course this is not any more true in the case of the last layer being a

semi-infinite body. At the origin of integration (mO) we then write the

boundary conditions as follows:

a a a -a a -1 B + D (I - 2P I1
z 2 z 3 z 4 - 5 5  5  5

T rz I rz 2  rz3  Trz4 -rz 5 -0 -B 5 + 2p5 D5 -U

We obtain B5 - 2U5  and D - 1

WI a w2 a w3 " 4 " 5
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so that we find the origin term of each deflection by

-- ((A - 5)- 2(1 - ZI2) (C- -D 1- -"b + 2 (1-2 0 ) 0I1
1 5 5 5 5

- - ..--..- .2(1 s

2.2 THE NUIERICAL PROCEDURE

In general, numerical integration can be accomplished using Simpson's

method of the form:

h
I (ab) [ if + 4f + 2f + ... + 4f + f

3 o 1 2 2n-1 2n

where Labj is the interval of integration of I (ab) subdivided in 2n equal

segments of length h.

However, stresses and displacements are obtained by solution oL expressions

such as:

a - pa f J0(mr)*JI(ma) f(m) dm

where the interval of integration goes until infinity. The numerical computa-

tion is Interrupted when the value of the function f (mz) (in fact the values

of all the parameter A Bi C ID I) becomes smaller than the imposed convergency

level (i.e. fI(m,z) < ). The rate of change of the function, fi(mz), is sig-

nificant for small values of the integrating parameters m and less significant

for high values. A reasonable approach appears to be to increase the incre-

ment of m (i.e., h) for higher values for a. Using this technique, the above

relation can then be written:
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hl
I [o,-] - -hIf ° + 4f I + 2f 3 + f4] for a 4 L1

h2

+ " i4 + 4f + 2f6 + 4f for L, < 4 L
h

+ 3- if 8 
+ 4f9 + 2f1 0 + 4fll + f1 for L2 < m

For practical reasons we take

h2 = 2hl, h3 = 2h2,...

In all solutions, except for vertical deflection, t = U and the integral

becomes:

I [o,-] - 4f + 2f 2 + 4f 3 + 2fI + h4
2h 2h

+ L' [4f 5 + 2f6 + 4f7 + 2f8j + Lf

" 4h[ 4f + 2 f + 4f + 2f 12

The main computation routine is

i
I [Li, Li+1] [4fl+ 2f1+ 2  ... 4f+2n-+ 2fi+2n ]

The length of the integration segment can be modified further with a value of

Sfi+2n

The initial length h of the integration segment is chosen by the user and

is multiplied by a factor of 2 when the values of f(mz) become smaller than

-2 -3 -4 -5 -610 , 10 , 10 and 10 . The final convergency level is 10

For the solution of vertical deflection, f * 0 and is computed in ano

appropriate subroutine.

2.3 COMPUTER PROGRAM

AMn m m m il u mm~m m m m m
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A computer program has been prepared that runs efficiently on a personal

computer. The main steps of the program can be resumed as follows.

2.3.1 Program Input Procedures

- Input of the data (by display or file) for loads and pavement struc-

ture

- Input of the coordinates (by display or file) of the points where

stresses and displacements are to be computed.

- Choice of the length of the integration segment.

2.3.2 Computation Features

- Vertical deflection at the surface and in the first layer, for m =

0.

- Parameters Ai B C Di for each value of m.

- bessel functions for each value of m.

- Stresses and displacements in cylindrical coordinates for each value

of m.

- Stresses and displacements in cartesian coordinates for each value

of m.

- Vectors containing the results using Simpson's rule.

- Convergency test for each f2k function.
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- When the final convergency of the numerical part is reached, compu-

tation of the analytical part of the solution for the surface and

the first layer must be added (LIPSCHITZ-HANKEL Integrals).

2.3.3 Output Procedures

- stresses o a o r
x y z xy xz yz

displacements u v w

- principal stresses a 1 2 a 3

principal strains e I2 e 3

linear strains c e e
x y z

2.3.4 Capabilities of the Program

The number of circular loads, with different radii and contact pressures,

is limited to 20 and stresses and displacements can be computed at 30 loca-

tions in the horizontal plane and at each place at 30 depths (included 8

values at the surface and interfaces).

2.3.5 Software and Hardware Requirements

The program is written in FORTRAN 77 and runs on IBM PC's equipped with a

8087 Math Comprocessor and compatible equipment. The executable version

requires 200 kilobytes of memory.
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APPENDIX I

ALGEBRAICAL ANALYSIS OF ISOTROPIC LAYERED SYSTEMS WITH FIXED BOTTOM

AND PARTIAL FRICTION CONDITIONS AT THE INTERFACES

SYMBOLS

We write

A-,l +) Ci ____

L. .4

y = h, i- l A.

'.. M 14 + 12 + 143 + . 4

where Hi. H20 H 3, H4 are the thicknesses of the successive layers.
The index 1 applies to the surface layer.

We shall successively analyse a two layered, a three layered and
a four layered structure.



A 1.2

Chapter 1. The two layered structure.

1. The boundary conditions.

Boundary conditions at the surface (z = 0):

A,- b, -iQ,.Z, ,

Boundary conditions at the interface (z = H1):

Al A - 5,C' - C, CA ,-)e+K

1A., A t-.~7 C- C(z-4 1v. D ('+&-t~
F',,, I,.= A I bt- eCz -ArL -,C),-' l.-x-<) T~

L.. A,,.. b,, + C, (A)4 - ,(A- X

,,.~ ~ ~ ~C- (.,A,+ X) e'. + C,+ -91 .-')r<

Boundary conditions at the bottom (z = HI + H2):

2. Resolution of the system of 6 boundary equations.

We write the conditions at the interface in matrixform

and invert matrix M1

(A,a,-, D, ) " = ,". , C _D2)"

after having replaced A2 by its value at the bottom

,L2y-x)
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(A+X) { 4..-) -(s.i') -42 -)

4A-

F wI-A'v -'F-

... -I I - -- ]D

A4(4-),

+ 0- +-

0 0 2
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1-2 4- 4-

-Ib r11a L
0

+ .., t, -* , , vy

4- A -VL Ti

A +o-Z

21(12 4- 1.2) Dail,

11 I - - -P2 bi
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A

"IL) L R t L ., + + L,' +- 4]3. ,

A Ml ) + i CZ

+(A L It , l D

' -2) A

i We write the boundary conditions at the surface in matrix form

M A b C, , T),2).
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All Al .F,, FFL

A:., As. Ff.1  f?62

A)1. &Z~ +- Ij - +'-+ (4-2ft) P4A,'III

Vz k% 9 - A 2.1 .. -
A 2. R1 i - (4~*)PL .(4)RL

A411-. A 1P2 Z jk a . p42, k. +4~ 'RAL

F,,- , (.- 2,) fA,

Vr 2-IX (.4- * ,-) f A2.

2. 2 2. P4.

We develop the matrix equation

and solve the system

-A (A-~. AM. -T F2

V

V

V. A, (Ax. + rP?,,) - A 12.(A2di +FI a) A2 L

- P'P,2. A21 +- ?%r2j - 'FF-. FF1-,
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We develop FF11.FF22 - FF12.FF21

- F?' 2. F2  *Fi

Al the other members of the denominator contain negative exponents.

The limit value of the denominator, for m = W , is equal to a constant

F1.F2 + F3.F4

3. Relations for the parameters.

The values of the parameters A, and C1 are deduced from the matrix

equation

(A. b, C, +,r M -D,
A (- ,,)

A(4h

A . (A22 Ff22-) ' kn  
1 ( , + fFz')0'A te"

V
A ,,x + P 2.2.) (Azi .f~l) 2 2"

7 2

V

The values of the parameters B1 and D1 are deduced from the surface

conditions

i ,-- 2)A, + (.--A.,) A, + A-.,c, (--24-

-),= A- 2A, C CA,C-A-4.)

U. 4(~ ~ A A. ?- F z -X

-A A a + 'P.i -x
V
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Chapter 2. The three layered structure.

1. Supplementary boundary conditions.

Boundary conditions at the second interface (z = H1 + H2 ):

,2- At 7 b - Cz L-*z-) aY + D -, (-2*..).--

I.- bLzj Y  C 2-A ),'Y tY z, .L_ %.-M)2 'iY

A ct, LA +- b3c7L t Y -C, j D C - z.,

Boundary conditions at the bottom (z = HI + H2 + H3):

%V: A6 -- : C2 -~v:. (lA 9L r )-,(.-A7

C)--O

2. Resolution of the system of 10 boundary equations.

We write the conditions at the second interface in matrix form

Mzb ( A . )b L C , Dz T- M, (),)T
and invert matrix M3

after having replaced A3 by its value at the bottom

-A , -_ _
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-I A S4-

A (- tL)

A ,(-C-p) C-..i-V) (J-4,.') - ,,,, v

-I - I

o - I,,. ,. . +_2Fo, .o

) 4 ,a,. -,.t2_4 .,)x, - ,.. b -y)

(Al - -4 
I )

+A I + M + N,1 DT

M3AZ.( )0
0 0 

0

0 IO " 0 4- .

0 k+t ) 0 IC
U.A (.1 L Sel k2 t

| I,... <',... i, bJ|I', l'v

.
0 to
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)CIS -(+,ti, -t,. 2. k*- 1,,.)

k2u, -, - 2 W., -A .kw

WA A 2)k3. +

A_____ Y) ,,,,..

At;l~~I (1) 4)3~~~) ~h~

A QA

-' = _ +{ t~ p+- ,,k IS. 2F.F ~ u-Z.. ,.

-' .*F+ M (' ' L )  + ?1, 1A, D4') c,;.
A - ,.) L 1

4- ,, I M4-k AI

.4 f T-Lky42
- UMIAA') 4-46 1

... . . ...... ... .... .. ., .. .. ...- h . . ..... . * .... .. .. .... .... ..~.
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(A l - Cu T_ ti M0 b D

We write the boundary conditions at the first interface in matrix form

and invert matrix Ml

M1-1 is given in § 1.2

I +

TwA 2.

o 1 0

0

CV + M,
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A 1.12

A 4 4

4 b +

0 a 0 12 1
o 4- o 4- fo o

-
Pl o0 V,- 04-

F'. , _x F3

F.z A TA + x P5

Fbl~ IF

FAA r 2 -,13

Ael, r, A , 1:

A ,= - . I' A, C . + (),A)

. .. ... .A t_ • .. . ..
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, A 2 + F2.,. M N=1 F2, 4 

4(4+0)

-A 2 - * Z.'2+R ILIC -AL

.4 D2~

N2 + 'FA2. bI + "iizti d')#3 Tx 'FA4A D)

- ,,L AlYAL ,- ., ,,,b2 + R-beI + r ,4 ,) ]

(A, .1bC,,)T =  4 MR t Au.CL D,)T

8 I"

All ,- ,

We write the boundary conditions at the surface in matrix form

A. , t. ,l T -_ j

.. .. . .. . ............. I s ..... . . F 3li .. .. +i ...... .. k %....... D
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MR~mo+ MW~MW + ti?.M$= 'b2l 9  I

~~% , 1z4

1b 2.: LA%(21+ k i) 'i. 4 (41,1 A ) t. + (lt~ Iril IF-0 -6)

-') -*4 r- 4 ,

~- -~ - X

h ~ 2l2 -A e .4%. + FAA, . A%
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M1Fk. F, F2 ~

$: (-- k)Az

,F~ I F, z

We develop the matrix equation

(Ail + P-n) b., +t (i .- i- ) D3. A(

(Au 21 + ~ r-r ) ,+ (All + TV F22-) 3)2

and solve the system

V

-. .* F '2 -. -_

V= A), (A.2.i IT-) - A 12 (A2.i +, 'FFzi) + i.A

11.V F2-' - P -Z . FF-2- - FF' F4



A 1.16

3. Relations for the parameters.

These relations are deduced from the different matrix equations

A it - 13 ---

-4 k 141) b;,C -t L kAL) DV)

4 (-i-)

V

A A 7.2 +. T- r2.,__

A6[4F,, (mF ) a ! a 1: ;N7, "
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Chapter 3. The four layered structure.

1. Supplementary boundary conditions.

Boundary conditions at the third interface (z = H1 + H2 + H3)

SA j + A, if C-4 Cj-*A-, 4. D, 2 -r4 t-% C

I *A* -I b .,x) + , -c)C2-
A~ A P- - - 1, 2-~t y _ 4- , &J( -

4  4-j *-)

IF vv~~: A J- 6 ) I - 0 4)-. -j) - 'b OL - - b +'X-)
LLA A bA- t4C -

A J . 16t? C(-4 -X) e3

Boundary conditions at the bottom (z = H1 + H2 + H3 + H4)

2. Resolution of the system of 14 boundary equations.

We write the conditions at the third interface in matrix form

and invert matrix M5

after having replaced A4 by its value at the bottom

2- (2 -) . C

A~AM
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0 0 0

ow 0 0 0 +

IIY 4-~ i -2.

1 0 0

0 1 0

NIS 2 LcL L I~ 
'Li i
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- Lt.

L A, j 4 A Lw b-w 4.. -Pa 24.3,

A

A)=-
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j, La

.,ie write the boundary conditions at the second interface in matrix form

MI) (ALT~b 1. C l-D)T MA~ (Ab PTICUD

and ilert matrix M3

M^,c A) b. TbaC-6) '

M3"  is given in § 2.2

-1 A - "'

- A t- . FI)2

I I2, y0

-Y 0

,4,. V4'- l*y) o>

I

o - _

0 ~Wk,-2h. 3

o_ 4' 0A

lib- MA* 4

A .;,tM2 3AI& S,
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0 0a'ih 10 ) 0

100

1.) 0'0
0 +~

IC

- 00

4 (A-.

Lr.

The relation for (A1 BI C1 DI)T is given in § 2.2

AA c, - y

io + m TF~~ Lmt+m k3TI" p * M1t. (A t+, j 0
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K 1 -(A-21-1) (-A 2+^t l~ )

CX1 CN . (A-2~ hj= O~

e:"' b , .- ,

II
0F1  F, . 0 P4

FF F F.2 T- FF 2 .41
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FF~t-AF~ -* '3

" ,. - + *(A 2%FAL

'F' 1- = - kA-*h) Fb

'FPj - FLA 4 (A2 ')F,4A

Fpr 2 a i -=rb

2.2.A -F2. 4- ,AL

IMP + MIILP+ML + MOMWAP] + 1~1

32

l'2,1

( u-P 'fr k?),.Its ) e-* On. P it L%.') +- ( it LAL 0- '

(k)) -l -,P . kt p ) Z22-v) * (Q1- P2- +~ 14 ') +- OMLX 4L4. 1

kuI Ili + (AR4) C2 1 Ph

It 02.. A~
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o0 k 2 24 II 22

1o4 L- kL24.

o 2. = 2.2. l< L, -iLAI

k C,2 Y4, 2i. 1  - 4-A '-i .L4I

k L 4, 1- 1<4 A -L41

kcLAL2 * -LL2. 4 kAJ4. LA,.

(1 A + MFF). (tMb + 1ThL) = LMAJt12t '11A.ikL + M.Ffl]~+ M1FJ. 'iWL

MA7$+ 1IA-M'IL 4. MfF-rlIh v c,

I- e
~t + FL~~

LotIt kL . 0%%1 k j1

~ ~ i.
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-2.

. m ' -1y-") W.I'C . ., "P'  +g ," ,

U tO' "- .++ + ' t - 4-:' + Tr -3, ''.+'- "- T "+

"l 4

&'L = 4. 2.2. . 'r o .PAa

+ 
2

We develop the matrix equation

4..)A.... 
D -

PL + 
.. A

(L.- =. I P k.=.,

TT2 - k"
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i. WL.v ~r-2kL .1  c 12. --PI+. XL, c-- - T-kL.1. c-11 + rr1<i..-, -2. -FLz,. F Ljz.

One verifies that the product

+ iV4 (LL2 L -tL,) (T-,?.'+-6 T4

is a constant.

3. Relations for the parameters.

These relations are deduced from the different matrix equations

A fb -Si

2.1t =- -LL [ ,) ) 1b,, .7- - L ' DA ,

'4(.4-A9
" - B 7-" + C PA2DA
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The computation of the parameters_8 2ex and D 2 e needs that of the
intermediate parameters A3e 2y, B 3' XC 3e 2y' and D3e~x:

-~ ~ P, +j(9 L2 ) e~ ~ C~~' Lz.)P 

+4 (1-e 2.)D

DW- 2-42%9( )CTx..R;~C)

29 - 4, (Ae 4

AC4+-L

At% 4F, Avv._Ix) ,LB, 4(i")AV(3
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4. Determination of the stresses and the displacements.

4.1. Mathematical procedure. (in the case of a flexible load)

The program calculates the stresses and the displacements using following

relations:

77 ) -

V-0j

AtI 90Pj W-A e- -w ),Z e-

.I ~ ~ Ef .. .. .... JA '.--.e- "..-
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Stresses and displacements are calculated in a system of cylindrical
coordinates. The stresses due to several loads are to be added together.

Therefore we must express them in cartesian coordinates using following

relations:

T-x ~ rc~~oe Ise4

Orr. h;= 0 + C41-1'r+r r-r

Lk= LA-r. (j o

Y Y = A.(. YV~ 0

wherein the signification of the angle cK is illustrated below.

Load

CL

<

r=7
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4.2. Stresses-and disp2 tlnts Eat the surface_ fz=_)

- -. (w rra ) P)(

+ 2 (r>-)

with ~+2 )Y (rZt

T,~ trcA A,

~~c~i-) A C0 m r) " O Lw) 4(, ck2uIjjie
Ck.(A -
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wi th ~2~*

~cL)

-r r

W 4- 2) IW

wi th A(:~

-c" U

- - it
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.A ~ A T, Cm r)O

wi th0

troL

4.3. Stresses-and dis 2acernent in the first lavtrL t b

- 0 uiri&i, LAl~ b. (A CA2 .14V

+2,(A -hw,)A.T C0 j.

1&,,r) jw%'4 4. , o[11)J *

with

p..

for_ __ _ _ __ _ _ __( ~ '



A1.33

T O (voir) - Cl t ON 7

Iwol)e

-j,(A
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3m V) W1-

__2L __ 104 , , ) A C a

ir 0

with

A&, A.
1

4 1
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C111,1- A) lie (Ch~ C~'~Ai,~)c~

wi th

'4r
~,L~).~)'o~e..: I: o

r 0 ~ (rIT

14 7 , T,

-w Iih_____L~

wi th

________ 110 +V'/ 10'L~4D

IT I' 2

4±k L4 Iwo-W;I
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E, o

4.4. Stresses and displ2acements in the other lavers.

The relations for the stresses and displacements are given in paragraph 4.1.

The terms Aim emz, Bim2emz , C i m  and Cime mz are to be replaced

In the second layer (HI4h4H1 + H2 ) by

In the third layer (H1 + H2 <h4 HI + H2 + H3 ) by

In the fourth layer (H1 + H2 + H3 < h < H1 + H2 + H3 + H4 ) by

14 (-%% L ----- op





APPENDIX 2

ALGEBRAICAL ANALYSIS OF ISOTROPIC LAYERED SYSTEMS WITH FIXED BOTTOM

AND FULL SLIP CONDITIONS AT THE TWO FIRST INlERFACES

SYMBOLS

We write

Ai, F-w&fb G",CiC 10 D D

L , (,_t,_-)

L (

where H1 , H2, H3, H4 are the thicknesses of the successive layers.

The index 1 applies to the surface layer.

We shall successively analyse a two layered, a three layered and

a four layered structure.
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Chapter 1. The two layered structure.

1. The boundary contitions.

Boundary conditions at the surface (z = 0):

I-t A1.TD -- 24 ..) + D.(1 2-

Tt% . A,- ,21, + - D 2)&. zbQ

Boundary conditions at the interface (z = H1 ):

r , + tL - ,- • , (A-,+..) .- :

Zvi: At. - . C, CP,,.,J,)).. - l A.U) (u Qa

A .J A, - z ,t) e C I, 4- L ,-2 - x

kt - .,11- 01 (-A , ,-,), -1 ,(- .,)'
FIAt& - %,c (-c .4r). I - X , &v - D x).a 7x

Boundary conditions at the bottom (z = HI + H2):

C-

2. Resolution of the system of 6 boundary equations.

Adding and substracting the surface conditions we obtain

2A;, 4. C , CA4)..) - ),

I b, - D ( e, - , . ,)

Adding and substracting the first two condit-ions at the interface,

we obtain

•) e - g C, A + A 1._
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where

I-]) AL-" 4 -U3 -, -, )i.' 1 .C,-z(..-Z.++

and, taken in account the bottom conditions,

We replace A, and BI by their values in function of C1 and 0, and
solve the system

x A3 L ( )I x - L2x+ 3-

2.% -R
2-I -A' a) -yA

[) A'l L LA+-.A)i ̂ -j X .- *). -

We combine the T,,- condition with the w-condition so that

and with

FL: F, ( - L , DLe
(.4- f.)

We replace CI and D1 by their values in function of B2 and 02

[AI]JA+ hffA' C"]. - 2(4XZ * 2 ('%- t1.cV
2.(A4 lxi) . ~ 4

We take the tri -condition and solve the system

B;1A -I.vwr -~-)ht I )

*IJ Jkj~2+~ ) EL:

ft--

t+ ( 2 Lt
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where

- z

-Ax

p ,. --.

A + A Z ,
L -,- Z ' I- - (4+ ) [,

3. Relations for the parameters.

VI I 2.L42xi" -A j- ~ -

2--f

A 4L 2 tLA 2] + (4-A Ix a) CO

b% A- .. )k")tx4 4.

-. ~I x 
L ..
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Chapter 2. The three layered structure.

1. Supplementary boundary conditions.

Boundary conditions at the second interface (z : H. + H2):

6: AZ$, , ,- _ e (.4- 2 aL.-Y)e i ,. .jv

S- A ,Y- 2 .). -,

Irv A2% - Y ty 4D22 '

*vv A2~. %,2L:t -~ 2A~-~L

Boundary conditions at the bottom (z = HI + H2 + H3):

2. Resolution of the system of 10 boundary equations.

Adding and substracting the surface conditions, we obtain

ZA,- .+ C,(-,.A.) -,

-i * 3), C--

We add the first two conditions at the first interface

2 A,tg - C, ( .4- A-, - IN)" t' 4 -" L^A

2wher - Z% -D, --4 ., 2x)%7' IA73

where
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We replace A, and Bt1 by their values in function of CI and D, and

solve the system

Pt [A)2] 2 .-, O] - (A+2)2- r.

3x -- 4

2 (~.201) e-, -9 -

We combine the -rz-conditions with the w-condition so that

4 7 t 2 (A... F, + ~ -~ ~Q' 2(4-IA)DI

and with

We replace C1 and D1 by their values in function of A2 , B2, C2 and 2

LA 2JL[i1 Ax ZA U-cx] -2.(.44+X) 4x~

2(A - 2, )%7- x - P 4  -

Together with the "L rz-condition, we obtain then the system

At !C C(21, A)t" 4 -2Lx)jo

where

7, -A + 2x%-) ZT

F,. V,
~ 2(-'x~t ,
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We sole the system for A2 and B2

2% - L 4- C2 (A1~ t ~ b2A- -

We add and substract the first two conditions at the second interface

2 Avty- c2 cA- A - 2 Y)Y ft 2  LA3J

where

and, taken in account the bottom conditions,

We replace A2 and B2 by their values in function of C2 and D2 and

solve the system

) &~~~~~ L A SjI -2.~ 2. (-1~~ - C ) ~ I L ~( . ~ v 2 ) 3 V~
IA 31 . -V '1 - . - Y .1 x

We combine thex rz-conditions with the w-conditions so that

and with

c_.k

D2ACy k.1)
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We replace C2 and D2 by their values in 
function of B3 and D3

[A, 3,3 (2y- 2. -x +. ;k"s) I -, (.+,,€- t , !L D+ " 4-1- .+It

Together with the rz- condition, we obtain then the system

(z-y)

2 ~ ~ 4 +-Ff (I 2)~ ' .

We solve the system

-(2 A *4_ ,

~ 2) .~-, 
L
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3. Relations for the parameters.

We have

V2
so that

so that

We have

- _ 14 Aa-)

so that

A24'g -2..y)

We have

c~~e.I, LC3.~ x P). +- - cji+.e 0 4-

~~~~- AZVi+23  (.,,+ A,)2)t -

7,
A 2x) - x ,,,'x

VI
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so that

Using the surface conditions, we have finally

- 2A,?. it - + S .t A ).- .) - . t
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Chapter 3. The four layered structure.

1. Supplementary boundary conditions.

Boundary conditions at the third interface (z = H1 + H2 + H3 ):

" Alt .' Cl(A-2V-') 4 + 3ACI-2*Ub-i)t.

ty: Abt' .tl - C i-xt'4 7)

L IA,4 - bj. i' - C, (.-A),. -,-} - I C 2-,A.t '

Boundary conditions at the bottom (z = HI + H2 + H3 + H4):

A,4c C, IA A(2-A ,

QA- o
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2. Resolution of the system of 16 equations.

In the equations of the conditions at the third interface, A4 is
replaced by its value taken from the fixed bottom condition:

AAC'= b -Aej- 34A (2-A4Y, *-) 4 m

We write the conditions at the third interface in matrixform

We invert M5

where

-' A
- A-

T A

Cb ,-s ~ -£1)- Ill- ILMel++L 231 ,, M-CI - 41,+
4 -I 71-2 -161

1.6 2 - e ,

L L(,Z--)- ~~-h~+-
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(!-
~2 I 0 ) 0 I6

(;I- )S0

.-

Y}.., L , (L,-L.,) ( " I) = A

-,. _ ( -2,,)(.,,- L4i)
- , -
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We consider now the boundary conditions at the surface.

Adding and substracting the surface conditions, we obtain

2A,-i + C, 44 - -) -2),

-2b A - C, - 1. AA),

Adding and substracting then the first two conditions at the first

interface, we obtain

2 A,*- - C,(4-4. - 2w) t , +~ A2.j

2bCA - C, .+ , (._A,. 2)97 = JAz]

where

We replace A1 and BI by their values in function of C1 and VI and

solve the system

-- w

COiZ IjA - +

We combine the T rz-conditions with the w-condition so that

:1 ~ C-- -)(A. 4  )~4 F C"L +. 2 D7 e

and with , = F

We replace C1 and D, by their values in function of A2, B2, C2 and D2

L. A 2] L -i + A x 2 s iA xh ~ 2 ( A X ) # ' z ( ,j -y) x
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Together with the T rz- condition, we obtain then the system

A2%2 .~-c ~-2A-C ) 2

where

We notice that for m = 0

We solve the system for A2 and B2

$2 LLI" + C. 911" (,-A rz

Adding and substracting now the first two conditions at the second
interface, we obtain

2 SIZI CLY 4 4 )AL 4)A 4 2 y) jA 5

where

A b~] A ThV -y + ~ (.i-2-ye? 4), y Y

We replace A2 and 82 by their values in function of C2 and D2
and solve the system.

. . .. .. .. .. .... . .... .. . . -. .. . .. ..-
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c J, L( 2- R, _) "t'-4 (I/,1 = LAS]L2y-
+4 Rd -vtI (A 1e4 -

1 jA)JL(.ii2 ~y2' *( 4 ),U *j 2-. 2V (.42 1t

We combine the trz- conditions with the w-condition so that

j- 2A~t (A+',) P'(- L) +

and with

C, 2.6 Dc.7j e'+ E

We replace C2 and D2 by their values in function of A3, B3, C3 and D3

L- 9 (% Ali) ,fl IL (

Together with the rz-condition, we obtain then the system

4-Z - CbA- 2j.-x 4) -(y

where

2 2. - 2.N e, '4 -t A' )
2. U -L ('/ 

V) -. ( 'f

W7!
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We notice that for m =

We write the system in matrix 
form

Y A2-I, (At)~

or 
T TT

We replace the matrix (A3 B3 C3 3) T in function of B4 and 4

A. 2Y 4 
I~j~) 'f .M2.6 S D,)

t,27 
P62I

We notice that M 41.M5261 = 0

M 41.M5262 = 0

M 42.M=5161 0

M42.'M5 16 2 = 0
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We cal1

M4 1. 5 16 1 =N 1

M4 1 .M5 16 2 = N2

M 42.M5261= N3

M 42.M5262= N4

and write

t v- 1) .(I .)L• -Y)(_ ,

that we transform into

, :z,--y -z -Y- - I -y, T

We write

e IV , I- t, e.

where all the terms aij converge when m = of

We devellop the matrix equation

We olv %Ah sy st 2 6 Dem -

U +bt2 4 (%. .22 t-7ee

We solve the system
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V3

where

1- ., ,, - () C X 2.1, + -+  l"-',

The term b11.b22 - b12.b21 contains linear functions of the variables

and has to be develloped in close form

1~
0 L .l

x L - LL , )  +  L, 2 + Y -y.

The linear functions of the variables have disappearel 4

the numerators of B4 .e'Y and D4 .e-y terd both +o :cr,

factor Q2, and the denominator tends to < cer.',r

and finaily

b- 4 I I



:-4-3! '07 TRZI:E::AND,_DI: LAC-EMENT- IN TWO rTrM 4M)FU
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L WNT :JPEP.IEUP INDUTRI EL -AIN5LIQU
F UA!4 -.AWELAERT ET AL. 3~ -EP 87 F 29/11 ML
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3. Values of the parameters AI , DI.

We express the values of the parameters Ai  D in the same way as

explained in appendix 1.

3.1. Values of the parameters A3, B3, C3, D3

The values of the parameters A3, B3, C3 and D are obtained from the

relation

rT CA-b b. Cb = 5 A'y1

+ NIF2GLA-P+ IF.. T

The matrices M5261 and M 262 contain nothing but zeros in their

first and third rows, so that we can write

(A, C, + --

TA A

The matrices M5161 and M5162 contain nothing but zeros in their

second and fourth rows, so that we can write

0 T
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3.2. Values of the parameters A2, B2 , C2 , D2 .

We have

SO

7so that

LAf3LAt(A+ )3) L J~

where

We have also that

so that

and finally we have that

s C2 (.A+tha2xt

so that

At 4 (A-A 2x- A
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3.3. Values of the parameters A, and C1 .

We have that

C X [ A 2. L (2 +-t I) 7 -)V w

where

We have also that

24 C (AL1

so that

The values of B1 and D, are obtained from the surface conditions

A,, 1,-.,- ,) - C,(A- ,

so that

3~ A- A, 4(A-4A
A - 2 A, -A

M -2 ( ,,, ." , (CI ,,) ).- ,,) 4t-"
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4. Relations for the stresses and the displacements.

The relations for the stresses and displacements are completely the same

as those developped in appendix 1, by replacing the parameters Ai , Di
by their adequate values.

Nevertheless, there is a problem in the computation of the vertical

displacement: its value at the origin (m = 0) is undeterminated.

The relation for the vertical deflection at the surface is given by

-' ~ ~ ~ ~ ~ 4 w - I "j43;Lwir) J;rL)~ (V go -2~4. 24r

which, to avoid convergency problems, is transformed into

The numerators and denominator of A1 and C1 are both zero for m = 0.

To eliminate the indetermination we should develop Al and C1 in a

Taylor series. Altough this is theoretically possible, the required

computation is very long and the risks of introducing errors, in doing

so, are enormous. Fortunately, we dispose over the fixed bottom con-

dition, which, for m = 0, transforms into

The w-conditions at the other interfaces transform into

A-- h C (4~) ))2.4)'b ak. IA,,- s -A 4 (2 (-4)-)-D,(-A-3

Al,- p CI 4 ,(-A,) 2 (2-AV,)c 82 -A1B C2 L2-+2) 42 (2-Afr1)J

so that, for m = 0,

A,- - C, -° D.

and thus

LA,~ -,4

so that the problem is solved without any difficulty.

---
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APPENDIX 3

ALGEBRAICAL ANALYSIS OF ANISOTROPIC LAYERED SYSTEMS WITH FIXED BOTTOM

AND PARTIAL FRICTION CONDITIONS AT THE INTERFACES

SYMBOLS

We write

oe,. + - A. ,Ac wv?-; +  V" v;) A

-V-$ 14, 1'4 +"• b,

• -i
kw-l 52. E A , 

ME

2

y+

Z = W, ( 14 , 4 % +*

where H1, H2 , H3, H4 are the thicknesses of the successive layers.

The index 1 applies to the surface layer.

We shall successively analyse a two layered, a three layered and

a four layered structure.
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Chapter 1. The two layered system.

1. The boundary conditions.

Boundary conditions at the surface (z 0):

i% A,Zx+ b, + C, D, 1

- 4 SACx -  > .', .' _ ,

Boundary conditions at the interface (z = H1 ):

W,..: (',, .F,) A, - (.,4),r) %e.-" 4. ( S-,-L., 4 C, Il4.,' ) I , C..

A, C4kL za + '52.i~ ViL

6- .A. +)1,)

t Boundary conditions at the bottom (z H H1 + H 2):

%V-A, (- + S L,.+)-& L, ,) C'j 3- ( -s .t-Da

t <. A240

,, ~ ~ ~ ~ ~ ~ C . ... . . .. . - - _ , ,4.= ..
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2. Resolution of the system of 6 boundary equations.

We write the conditions at the interface in matrix form

b, M, b%) - Diw, )

2, ----

!+

-- i

2.~(-w) 4 -x i) (~-h 4+

I = C- a.-F

9 r, -: Y-)

A4. . , I.. L

(I. -X J
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mV.H ti laX iteX

2s5", ( -*,

i R), l

b aj4.2 - ----- , 2L30

2A, (4- ,

We write the surface conditions in matrix form

M. CA, lb, C, Z,)T C, C T

1"e

S II I -L , '

A 2 .1 -
A

+ R4 2 -

-A
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We develop the matrix equations

at,. b t.1  CL2 DL-

+. A I L -D2

212

f, X . 1 A, I") M (-

IA22 +, 2.,, I ;,%,x 2- w, 2J F

L', V s

All Ali '. 4- P. t,, Z ILR, -V

The numerators contain only negative exponents.

The denominator contains negative exponents and the 
constant

(A- S. 2Lh.A 27. - 142 A



A 3.6

3. Relations for the parameters.

The values of the parameters A1 and C, are deduced from the matrix

equations

2 ,(A- ,)

The values of the parameters B1 and D, are deduced from the surface

conditions

2 A,) ,," + C, C,'"r,
b,. - .2"... ., (+)~~~

('- ) - ,
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Chapter 2. The three layered system.

1. Supplementary boundary conditions.

Boundary conditions at the second interface (z = H1 + H2):

%ri: A1- ' c, .,'"" A;.t '.. ,, - - .D-

W: .. m.A (4-)A.L) baalei~)~ CZ -PL(jL+ t-L) 2

Boundary conditions at the bottom (z - HI + H2 + H3):

WV: (4 .ay) Ab- (.44.+!)~,3' .S~~~A))( b~..~

2. Resolution of the system of 10 boundary equations.

We write the conditions at the second interface in matrix form

(At 5L CL V) r MV'.MA Cb DO
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-6. ll(j!-,) --

st (4+)t. d~. '--l

.T{i-) )., 
.- -, l+l, zv

(2-Y)

k +- -(z-v) ~j(. f-~LV'1, .I 4 e. -a' t ~{~#, .l'-tL -v

A4+5 -Y -

kw'.t hi-I ,,.L

,I)-t < , . - -

MAi 02.1

bMl) 431lz-y

4 '. t . .. , ...... ..



A 3.9

2h (4-h.)
A

____ 4. LtA b4L D1esI

2 .- h

We write the conditions at the first interface in matrix form

The value of M11 is given in § 1.2

A1

-ty-y-x

_ ~z. .-- "-x

O. 424tXe
J . .

1U.i.,

RAI V

-%------ An -
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21. 4~A I,)2-b -Ra 2ZtpRAD3C

L" (4he RgL a 4-0,Rj

(A,~~t T t.C bbD3

bus All 6? +I +. Oa

1462 UAU P41 652- A*vL)I

)b -a ASI (L JkSL %)Z Ra 1bL R4 0vt

41 RAIoftRAI at U, 41 R* Ou
RA.(L 

4, 
y 

L
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We write the surface conditions in matrix form

The value of Mo is given in § 1.2

" ,^A . C. A D AllT

VV

COL ILL L't -L . JA2. aja

We develop the matrix equation

Ovi., bb 4. A 2LL P

and solve the system

A2L

Aft.At& - Z.,i

Aw.Au- All. A2:

V27L MO.N- k. 0L
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We dewlop the denominator in closed form

A • I . - - .). Ot L IL . I•

+ (2? j- Al)C

ft b, 0. - b, I, -L. =

+. Al altIL r - AI:h*.J :4-

* '- ~ &l *bI &1]E1L&14~ - Ai2 It 24] It-)d

4 - ~-a, -
GaL-. 14T,.- -

We write

loll Onj.- 41~~]~9

L&" 0*0 (bi ,] -) =

LU I ,BL - OJ J 2a,-')

. . . .. .- Q A, &L Z .....
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4 A A% R), - Al 92A]) 0128,LAU1 Rp,~ - A P2. P-15)

+ 013. 1 lk= A - $t 243 + I O13htb A4 - PO& A2'435

-1-

J ~1. - 4 --x) 8. -a (ub -

11 OI u. 1 Pw.. A - A I . 2.'bI l R - - PA-L As)

92 ALkt Pll - fil 34 + i 91A ie L R) RolPh4

IPNbb )PAL'k (v J t;

4,'.~~~~~i LR,'I -%Aat 4. 1 .

4- 4A Lkj,2 'A - Nb' lkA) 4 IUD Fk) jZ R, Pii

UT &
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{ 4, LAI AMi . A il 9 A, -4 ul% '1 L Ali~ 1 b - Rva'R3,

JW- na.. 1443 + ' Llkt IV 3- 1

* ~ 4PE~f~e3

vim 4L 4L

Between the brackets, the denominator has next constant term

C ( J. ) jQz,4Ai - ) I 2. L R 4 4  - WA .A 4

V .~~ (Y-X,) 'y)

\7 e- ve x 4L~___ __________________
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We write then 4; 4 -

IL~ e 4. Rq c to~~ +

1 , AU till Ri I LI - R Z. be R24 014,

Rz-, 3 -L r , 0.,1

16 Ot ,1. Lo., bf*ZC A' all

I Abe.~h)(.'L OS- IL1w 4V-i~ -I7-)

Vill a~' R~ .&

The numerators contain only negative exponents; the denominator
contains a constant term and negative exponents.

si tAIX
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3. Relations for the parameters.

The parameters A2 and C2 can immediately be deduced from B3 and D3

A2. am 4. 1 , bb + (Dr I9b

The same relations for B2 and D2 contain positive exponents which

have to be eliminated.

2J,~~A q ,-

2:4(4-hlot)

, 1 . t,?, - Rlb',2,b - 2LA ,12A +'

-4 -31,X

The factors R2with the negative exponent .-s2(y - x), which does

not eliminate against the positive exponent (y - x), have disappeared.
... . L _- V .
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We obtain in the same way

V, -v-A
- I. 2 +,Lz4 + DI9- € e+

t -2A

RO~ 9JL4 4R~s Fe54] ex

The parameters A, and C1 are obtained from the matrix relations

J2 (%A --A

4. R,z b. + + A1 '~'m

The values of B1 and DI are obtained from the surface conditions

bu _ _ 1, -(4u r.)A " - 2r, C,.C ]

-, _-- - 2At t - . 4-.) c,tJ,1t
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Chapter 3. The four layered structure.

1. Supplementary boundary conditions.

Boundary conditions at the third interface (z = HI + H2 + H3):

- o'z " A ,, = v C , 11 ..' ( '
,: A,, + ) - . I , )

~~~~~A,4 - '  -U , + C, . { '  _ @.7 r4

Aj i l4jb~ +-N )CA l~l PA. hk4kDD

Boundary conditions at the bottom (z = H1 + H2 + H3 + H4):

We a

S(- +V,' A A o4
AI-, 4' [i+ ,b,4 )

i tlil 'b,

(A . .. .al 6AAL D4 ,Z2:* .
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2. Expression of the boundary conditions in matrixform.

2.1. At the third interface.

In the equations at the third interface, A4, or C4, is replaced by its

value obtained from the fixed bottom condition.

We write the conditions at the third interface in matrixfom

Lj$ A b-b CbDa.)T  ' G (b 4 ) T

We invert M5

A b %111 C D 2 MS

_$, (4 + Q Jr,, YI' 10) .[. 1F) { '} e-.2.Y"{' Y) S .e ,( Y)

If s4 > 1

- (- ,j 4-
4 -. -,--,-

t)AVA 24l
C A,5)L1 jA A
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We write A3, B3, C3 and 03 in function of B4 and 04.

"&(i-4).(2i).I6 2) D,4 (i-Y)

- ; ,lA- I
Cb a tis (bl) M f. .4 - E NL(i). U(',2-)D4

where M5 (i,j) are the constants in M 1.

We write

?J4 . - "'I(/ ) " ¢Cci )

so that

2.2. At the second Interface.

We write the conditions at the second interface in matrixfom.

Te = M3  (A3 b C3 1))

We invert M 3

(A. Yr ~~~~,4(A5b r.D3r
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%ILIA4 -v) fA

MA 12 -V)

We write A 2, B, C' and Din function of A3,BC n 3

A2.X

+~4 M SP t,(i)MA(ill)- 5~3 (y-v)

I~ Y)

%2)

- ~ ~ ~ A A) 14f 11A6 )~A,-o ' M(h). ('i) B3

+ e
2:7 4~2
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where M3 (i,j) and M4(i,j) are the constants in M3
1 and M4 .

We write

so that

2.3. At the fitst interface.

We write the conditions at the first interface in matrixform.

MI (A , , , ,)T - 2 (, 7, zC., D-

We invert M1

T

-S!t

)l- J - l  -s.

We write A1, B1, C1 and in function of A2 , B2, C2 and

A A
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A, I ti1441) M-1 0-4) *1~'% A2 4 M4 ).1aC) ?

1. '"2) i '~A tt 4 i fii t

2: M4A(2iQii2CS)I 7ry;CC + MML,J*04).DJ2

2.r, (A -",)

I2, (.A-V' )

where M(i,j) and M2 (i,j) are the constants in Mland M2 .

We write

A M C.. +2 Ci A)

so that



3. Resolution of the system of boundar COnditions A3.24

We write the conditions at the surface in matrtxform

-4 , (A C. 'D)

We have then following system of matrix equations

MI . (A b,C, D, )T= ( , ()r
(AC. , ,)T, A . R C A%1, C,.D2)

2., (A-i%,)

so that

2'1 S (A-h,)(44"i) C, '7

M I . M Ra.-IAI L2.L4

bit.

lb2,.z

nin. MP I M P.
t~i CX?
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l11. :- el- '

t.i.C21. C42- C21

3.1. Determination of c 11.c22 - c21 cI

The expression of the denominator c,. c22 - c2l.c12 must be established

in complete closefor, altough regarding the exponentials.

CVl t -~bit~ oql..b + . bit7~) o,. I~

(N, U2. Ok- b% a).% ('bi 4i.- CkM.. b1

r-1 2.- C12. A-C2 i.~1I.(b.bi~ bab'

+' (Cm,.Owt- l~o~) b, b i2bo

Ck(Vl. Ca.1 - VIIA.cij) (h. b2.a - b2. bl)

.Jk.12 OL4 I. 1n I.I

ICtvm 2 4-A I

ilo ~ AL A4. 
e- i

-jige

______9 
AA_~*
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a. -~~~ t)R . ~.,aA

-C -X 2L'-x x i

~~I 4-'4-i (S, R ise l

4 $t C21 il,(~ ) ~ 4 A.iX Ca-') '

-~~~ 2JA*]

~ ' ~ (A*3mA) Q2.b Z I

-A I L ' 4 7 2 J2 3 , -1 -l y

4 i' iv.C ~ j (t)Ri. 
1~ 2 St  A 3,~

VL2 At4) ~ 4L 41L

2. -R2 0 ZA ~ s" ,
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%%2 OLI - ZJ(L

4 2-s,Ls c2~-i 4L

ItZ, -21

L (. lolt- (A.:i3R2AL - 2:1.RAS4

V~142-.,~~2 tb''jl..C2 dy' - ..k AC

Q~~ . A~1 2, -ICv) 3, 1( A25A

b .l L (say--y') ~h A,,,,c
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bv w4. 6.2. f Ja

:~ U~~A. IA)? 
:aty-x)

+ 4A VbO )~ ) 4- tAI..9-1 qP 4

Lis -q.2. 
.

.~pl 9)7. '--~*
a~~?2 

PSIit 
P) -P3. ut

V 1 J'. & 3 VS1 9,2 9*1) 9- 0-

IN - 9m-?. ?3

L PiR -9

Al 1 imi.fn2 - A.P]
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j~k 'Amm- ON. - 2')"h

4 LY'b - 413 +~.J It') - 3 - 01 -0

-~4 
VIA -%13- * [I A;-

4~I1~az4 (u.~'~]3A4- - 103 Q}54

't i, A - 4, ia 2$ . %U 63

it ~jiAA- 21 .02 I- .&~ -i 1a 1 .E3b} 4

4' 42AAA ' AbA;'j ) A 1111 [t~~~2 ~ AA3 A 2

'lA 2- 1'32. A 3-') 2)) *z

O. AkA -
6)2.4Y443- 4 -
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bit.VIZ bui b,~2 ~ "~) Sm (Z-Y)

~~~J LIA -7 
(2-Y) bA Le (v,,yv)r Y)' .~2

The value of the denominator is then finally

~W

-2 U2 -

A4. Avb-i, t

4, Aw. 2B i J2y

4 ''-

Thetem 24.B24 contains the constant

We write

C9-22-I.-,=Q-. *0." L C *
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3.2. Deirmination of the parameters B4  and C 4 '

We write

--
2v

M~ t,

14rx% .%% -

~~2.i~~~J01 -P.2 P ~ t

b) ~ % ~ ~ ' %..7i~ -- +~~)2~1Y (0 *9.?J,- 1

pit~ ~ ~ I,. Ou. P. + 4t j

th12 14 
3A.4Q4 *

At -. Pit

We have th atC 

2

;ijt 1  C 24y-' C I. t21

JA TZ (A- 14 (A

pl~2,. c-.
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V, (w) tI-11)

t-P,. • .- • ,, C. I • M21- l

(3 ',Y ' " -Y) 1-01 -X) 1,/ 0 .1 32.

4L t. e, 4 7 L .-

Oh~~ ~~ 2~2 kl 22. 2-A2

C . • • - "

2 ) Kj - i) . :.., ,, C..- v,",( ) z - ' ;  C'z

62_ 4 4.2, x1

j e ) -YJ)tY

A V X CY .(W'

The numerators contain only neaative exponents.
The denominator contains a constant and negative exponents.

2N-Y p - e
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4. Values of the parameters Ai , Di.

4.1. Values of the parameters P3. B3, C3, D3.

The values of the parameters are obtained from the matrix equation in § 2.1.

A)-y S4
r4

One obtains immediately the values of the parameters A3 and C3

A. IL _ ,, , + T .Dz
A?4- Pi )4 )

The determination of the values of the parameters B3 and D3 need

some more computation to insure convergency.

J-+,-Y)
--- 1 2 1. ~

I31(7.,f B-~4 'PA. D

Those relations contain positive exponents wh-'ch much disappear to

avoid overflow problems.

'I).3 = - -

tA h)C-I) A M ),
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?I22.DA

+ Ik'A ?2

4 t. t 1 -)"

- ~~ 1et).Liyi)~~~sk-OoX~ '

+ ~ ,i) ~Y4~2V 'A - ?72

-s-y-2517)Y

9211 L?21

L'A-Y) 4p2.2T 5i A'~tI.P 
t
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- Pn. q4,- 4

The positive exponent e(Z-Y) can now be eliminated

s--L ~ ~ ~ , (A v (-I )

and the numerator contains again only negative exponents.

Ct*2.' L I,)' i)M vVb-

+ 1-~tI-A , _1 1 'b PA I~ -t vL~''b 12 A

. 1 . I
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2(.--Y). -bz2 ) f A '1Y)

= l J).O WL'  . . ,z - ( . 22 +C e . + P,4 14•

PA l w 11 .(- Y Y CNXY

- 4, 'Y ) pit

and the positive exponent e 3 (zy) can be eliminated

Low-- P , 0, 12.- P22 + 03'

I 0-b)- pi P,,
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4.2. Values of the parameters A2, B2, C2, D2.

The values of the parameters A2 and C2 are immediately obtained from

the matrix equation in § 2.2

A1j= ,Ai As - Ol IC* ~Stz) iA

A, + '1 C e

The values of the parameters B2 and D2 are obtained from next

matrix equation (§ 3):

AA2.
c ----..-- )- 9 I, , D A

Ct A (-IL A11

The necessity of convergency needs again some more computation.

B32.- A4'22 A

- 2,(s~21a - r-121 22]

CA C 2.,6, - C 2.

C----_'.2a
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t [S2LI4 QL~~ 2 - V2

1b/1

413 -A~~?2yh ) & . -. I V

Ly-') '6

b 2 .. 2 2~4A-.1) -21.y T3.yK .st

-~ 0b2. 1 . b 2

4[. - -2sL1'V' L b - 2

e7 0'-2442

2SJ( y-XO -21
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C2 2. b41 - C 2 1. -

-1-W') I , -A

t = - ~~~3r a ( -4ilL V 2U) a2r %L -. 01,, -" +)z X2 c P

The-positive exponent, eS2(yx) included in b4 1 and b42, has disappeared.

The numerators of B2 and D2 contain only neaative exponents because of

the presence of the factors a21 , a22 , a23 and a24.

4.3. Values of the parameters A1 , B1 , C1, D1.

The values of the parameters A1 and C1 are immediately obtained from

the matrix equation in § 2.3.

A - - SLPc .2
2% L, in--A

A tqli v 4A2  B V ~ R.4 uL 4C2

I, (Aivt

The values of the parameters B1 and D are obtained from the boundary

conditions at the surface

-
L

A .A4e7"
, 2 , W 'Xt ' '
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2. Expression of the boundary conditions in matrixfoft.

2.1. At the third interface.

In the equations at the third interface, A4, or C4, is replaced by its
value obtained from the fixed bottom condition.



APPENDIX 4

ALGEBRAICAL ANALYSIS OF ANISOTROPIC LAYERED SYSTEMS WITH FIXED BOTTOM

AND FULL SLIP CONDITIONS AT THE TWO FIRST INTERFACES

SYMBOLS

We write

Aivri(A t h A
[' - ,,C I, 9-H,..-•.. )*;., )

E__ k .L L

y W% '4~ L

where H1, H2, H3, H4 are the thicknesses of the successive layers.

The index 1 applies to the surface layer.

We shall successively analyse a two layered, a three layered and

a four layered system.
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Chapter 1. The two layered system.

1. The boundary conditions.

Boundary conditions at the surface (z = 0):

Arz* ,w 4 t , + +

A, "-4- b, + - r,3),

Boundary conditions at the interface (z = H1 ):

72 : A%+ bi' + C, + 3) ,; . A1.Z('),. b + ( I.

• trz: AI- b,. D. ' zq, = a

DC

Boundary conditions at the bottom (z = H1 + H2):

w=0~ (.4+lt.) AL - +-.1)Cj -t. . x

ttin L

A2 ~l, -X) ~ 4+0.' -X) Sw D~ .49.)
4I -)

2. Resolution of the system of 6 boundary equations.

We add and substract the surface conditions

A,- A ,

A -J
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We add and substract the first two conditions at the first interface

2~~~Z. + CA+S,) C, + (A-S,) ,JTv~ A2]

2 , + + ,E + Z LA.)" - 2-

where, taken in account the bottom condition,

L + Aaj1 x 3 j +)

A- 2.]<-'

We replace A1 and B1 by their values in function of C1 and D1

(. .-, M, " "] lo- ( T.) 2, j.'" > -

We solve the system

), LA 2 J L t,(2.. C" - (+A ) i - SIX

+ A+,. - 4 A -

v,. 1;," i" - c o)' +2Ja"] +. (.-:,t'LA 4c 2J",'
72A . 1 2j£x]
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We transform the w-condition utilizing the r rz-conditions

C,,-,) c, - C,-) 'it-sow = F, i ( ,Z-1
and with

P2.

- F2 ~ 1 .A I

We replace C1 and D, by their values

I A231 (A-9,)-(A -,j v.~
4 

(4+'. 1 I

I2 -'

with

T1V,

This relation becomes

1 + ti),
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Together with the T rz-condition

I. t >-')  ] , ., )- ,-.

- L 3siji)..g) -st j

S (I,-) 

+Y 
J

we solve the system.

D2. 2

-2.* -X 2

R . L - St J

C.4 4. R j) + 3,) & 4. h. -'

.v, ,

()" )(A

-t- F-
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3. Relations for the parameters.

C,- jAt L2:, c"V. - ( 44, 4-t

. - ,X

Ch - £ S ^)L2 ,. - 4.' (A:)+ IV,

~ , - - , ~.F2, , * ,'- 2,, +S. IL3

Jl-JX

2.~

A W ... , 2.) - • 4 .. C

The values of the parameters B1 and Dare obtained from the

surface conditions

C CS"
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Chapter Z. The three layered structure.

1. Supplementary boundary conditions.

Boundary conditions at the second interface (z = H1 + H2 ):

r: A2 b 2 IY-Y) 4 CL 2 D '( -1Y ) A

Y: Cr)A - .+-- .) + 2" Ca.)..)Cz -D..z N+ .)v)) Ca

Boundary conditions at the bottom (z = HI + H2 + H3):

W= lo -i 2.f&b) A )4$KO5N Z (Z) D(1"),

A<4 l% X )

2. Resolution of the system of 10 boundary equations.

We add and substract the surface conditions

2A,.'" .. _. (.r,) C,&' " - ., ,

We add and substract the first two conditions at the first interface

.2 A + [-ic -Jr-, ) I , '" = LAI)
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where

[Al] A,'_r 4- + 4)

We replace A1 and B, by their values in function of C1 and D1

b-S) C, j-j-1tA4ZS1Y * (4.F) ), Ei",-' [A ] -e

We solve the system

..2x 4Js(

4 j2JS-,-Q e - -4-J)e j V ,

N7 - (')+.'.) I Z +C , 4. (A ).4 4 .

We transform the w-condition utilizing the T rz-conditions

and with

.3, (h,-, )

it- 3 ' ' C2 - _' -_  'Dal

We replace C1 and D, by their values

2.x- ,jer  '1

+. 2 -1 V j7) " + 2 Z - 2

IA23J. ', + j 1k
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(-1) --/ ]

Writing . we obtain the system

94- (A+.-~) 2 A _3

" C.'

and by adding and substracting

-2 b2- I- b) CL4 i r+ R3) Di _
We add and substract the first two conditions at the second interface

2 A 2 (-I-Jt .) 11e" -)-LAb

where, taken in account the bottom conditions,

We replace A2 and B2 by their values from the first interface conditions

c, LO+.-)- Ci+,,- ,'-''

.. . I. 2)___. . . . .,) IRA ] +....
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We solve the system

Cu [)Ab-L2Trt, ) :,( t )_ - - ;24'-") +(4,3 L4 A

We transform the w-condition utilizing the Trz -conditions

and with

We replace C2 and D2 by their values

~i

2.r,

Fo w7 = va (A-L t.4J +RS
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with

Q-

This relation becomes

-i)

J + 1 '

4- 4- (-))3 f) 4J 03 D

Together with the t rz-condition

we solve the system

gb)- L- , _ ,__ -__ +____ ,___-______-___,L_-
26-,

-2-y (5-y)-Y
e -L

AM 3
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-,
e. -

V 3 O

3. Relations for the parameters.

I 

ALa -L j -~b (-4:L) C, (..-J.) 1,ZI

T r t f p, C an ae g.

The relations for the parameters A1, B1, C 1 and D 1 are given in § 1.3
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Chapter 3. The four layered structure.

1. Supplementary boundary conditions.

Boundary conditions at the third interface (z = H1 + H2 + H3):

Atj: +b bi e 4. D,

TI Ax A -b - bj t 1, ., ' J r. Do
-VV Lx.-v CC3, - 4+

ink 4- A.)4-

LV. 1( ~ 4.r.) 1 44. 1) tA

L,- .).4)..) AA,- t,--.-' 1,AI-..,) i,. (4a{w,,F.), t~ ,,t,. s(.- D

Boundary conditions at the bottom (z H1 + H2 + H3 + H4 ):

W0

(-i +.A AA -( ,+JA ) b4ittL2),V : 'W *A) CA- YA) 1 -

if CA 10)C

;4 (V. 1" tg4)
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2. Expression of the boundary conditions in matrixform.

2.1. At the third interface.

In the equations at the third interface, A4, or C4, is replaced by its

value obtained from the fixed bottom condition.

We write the conditions at the third interface in matrixform

h (Aobb C., )r " Tr(b,4 Dh)T

We invert M5

(A %,C,, ) T = M~C (Aq D4 )"T

QL--_ ____.___J2-7 _~t(2-- A

(A 3 ~) (7 -

b+i-b'- -s~(Arvq . "( ( -Y 3

If s4 > 1

If s 4 < 1

5A (Vm)' ")
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We write A31 B3, C3 and D3 In function of B4 and D4.

A3 -1 2..ti~). - DA + 12) t~Iz) P4 (.'

2J,, 4- I$)

(2* 4(' -1) S4 1 7(2i).1 2 ) D)4 t(2Y)

where M5(i,j) are the constants in Mt
I.

We write

'?j4 Tm A L)1CCi4)

so that

A.) op Io12

S?21 e,(Z)) P2( 21f)B4
•D,

D5 PAI 4P
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2.2. At the surface

Adding and substracting the surface conditions we obtain

-I,," -(-'r)C.jiw_ (.A-.r. ) D 1

2.3. At the first interface.

We add and substract the first two conditions

2A, ., ,, A-p,), , ' w " A. y')- B2 + C-=, (-x) D2

2A -+~ AAAC -.
a LA 2]

We replace A1 and B1 by their values obtained from the surface conditions

(AtI-:)C, 1-e
4  ' +- CA4:))#Lej Id [A2 -e=

We solve the system

The positive exponent e x has disappeared.

_ • . . Am 2 .1 - , - -_ = . .... .

4c - S) (--Y'r* -

L- 7el - ( 2L'- 4\ (A-S)2

ThFo iiv exp.o nt exhsiaperd
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We transform the w-coodition utilizing the -E rz-conditions

3 (VI, T-0

C, -,e s  = FC2 -6,

We replace C1 and D1 by their values

Ir C,- Do), l =

2 ?,

t A 2] A+- .

Writing R,- E.: , we obtain the system

R4 'RA

A, t- _x)- 4 3: - = o

and by adding and substracting

- _ ( t._ - R 3) Cd' ) -  ( 4 ) .'t. -

b,9.
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2.4. At the second interface.

We add and substract the first two conditions

-:Z x A% + ''DI Ibb +~~ Y) )

- [Ao]

* 21  ~C. + 4. 4+J2)))2 ,2+- EA[A]

We replace A2 and B2 by their values obtained from the first interface

conditions

CC A-,.) - (A C-

4V D2 -Xi) z

We solve the system

Tj~i L y -)e -L, +

C2= ILA -b _= -1 Y-L e ( A 4 r -+- ¥ ' + ( , i~ (-)

-- s).w (A-, R [c  t -h' ) ( - 'X -, _1 -_ -) z ( - )  - v

4. Rpost iv n 4- e- d

The positive exponent e(y-x) has disappeared.

ILI .2Z~ -~ CAJpi~~~ -b 4,'r2~f

-2-.A

(A h) V - -
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We transform the w-condition utilizing thet rz-conditions

:tCiii-,) C 1 - Si (.-')

C - b T  # - )  l<l -Y ) (-) )

We replace C2 and D2 by their values

LA2,]LCA4T e 3)Cz-1)iTs ' ? - '  - 1

fL

Writing t = ' , we obtain the system

A ['v) %) 4 , ' ( - ) +D - Q ' { ' ) QI =-{-

and by adding and substracting

+) (

. . . . .... . ...Il . .. l..--.- . . . ,+_ _
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3. Resolution of the system of boundary conditions.

We have from the boundary conditions at the third interface ( § 2.1)

A A %+

*4 -- Y

A LV,. , +~ D-4]~ £~~

We replace A3, 83, C3 and D3 in the last equations of § 2.4

(A+$3 ? 4- 05)1P42

We solve the system in B4 and 04

((A+ e-

(A- ,- J) P31 0
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and eY *e IS-y have-1-b , .?12 333'y -2 '  Y)].

The positive exponents e(z'y), eS3 (z
'y) and e(z-y)'e53 (z'y ) have

disappeared.

L=P1 2~-~ PL1 'P21) ) S2 X
4 z/2) z . p.- .. p, P21 T ) ') - , (a .Ra. ., .Ij

-121-Y) ( -i ) 2z -Y).

+ (-4 - 'P2 93, e.

Tor Ly (.4- Y-) + K (--3 22 R~ ?A~ 'PA)

The numerators of B4 and D4 tend both to zero and the denominator

tends to a constant value.
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4. Values of the parameters Ai, Di.

4.1. Values of the parameters A3, B3, C3 , D3 .

The values of the parameters A3 , B3 , C3 -and D3 are obtained from the

boundary conditions at the third interface in which B4 and D4

are replaced by their values from § 3.

A3 ~ ~ PIL D3 -
'2's (A.~

. , ,_.i,, ,927. , ) P) - P ,

0% -Y)

The positive exponent e(z-y) has disappeared. Although the presence

of the constant s3(P22 P41 - P 21 P42) the numerator converges to zero

because of the factor Q2.

4%- Pl !i P~ P,5,L-

P52 PV 3
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21,

-- ~~-Y 'P,42'~ ?Z.r3) - -

(A

4.2. Values of the parameters A2, B2, C2 , D2.

The values of C2 and D2 are obtained from the relations established in § 2.4.

L
+ 2.. LJ 3 ] -
+AI ' Y  C, Ca sl Ca -Y) 4. 31}

D2 3,-2 1 ) +s

The numerator in D2 converges because of the presence of the factor R2.

The value of A2 is obtained from the relation established in § 2.4.

A-L a . C".. 5a + . -* - (. . ) C2 - [.-10,17

The value of B2 is obtained from the last relation of § 2.3.

b-| -- 'R- 3)-- . . . . .L
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4.3. Values of the parameters A1 , B1 , C1 , D1.

The values of the parameters A1 and C1 are obtained from the relations

established in § 2.3.

C, 2-, ~-r - (A+-l) e I 4- V j

For the determination of A1 , we need the value of Die si
x .

The values of B1 and D, are obtained from the surface conditions.

,-- - '2A"- -L 4Sa) C's

5. Relations for the stresses and the displacements.

The relations for the stresses and the displacements are completely

the same as those developped in appendix 3, by replacing the parameters

Ai , Di by their adequate values.

The relation for the verticale displacement is again undeterminated

at the origin ( m = 0). The problem is solved in exactly the same

way as developped in appendix 2 (§ 4.).

AIL_ _ _ _ _ _ _ _ _ _
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Four-layered System Program :

This program is available in two versions:
- EXECUTABLE version, in which the executable program

is made up of only one block with automatic loading.
- SOURCE version, in which all controls, data, and

all modules are in separated files.

Floppy disk contents

In following text, x means A = ANISOTROPIC
I = ISOTROPIC

y means P = PARTIAL

S = SLIP

Each floppy disk contains following main files:

AUTOEXEC.BAT ----.. automatic program loading
LOGO.BAT display of introduction logo
FLxyLO.TXT .. introduction text on screen
FLxyNO.LOG .... introduction text for printer
FLxyNO.TXT .. this notice

*EXECUTABLE floppy disk
This disk contains the following files in addition to
the main files:
FLxv.EXE --- > executable program
FLxy.DAT --- *: data file for demonstration
FLy. LST --- result file for demonstration

*SOURCE floppy disk
This floppy disk contains the following files in addition to
the main files:
FLxy. VER --- > revision
FLxyI.FOR --- > main module
Fix y2. FOR .. > subrout i nes DOMEC

DOTRA
F'OCAL
FO I NT
PAS
CHECH
ERROR

FLxy3.FOR --- > subroutines ECHDE
VINIT
ZERO
FINIT

FLxy4.FOR --- > subroutines P4442
PCT22
PCT42
SOM42
SOM22

P4444
P2442
CONST

aS1 L -1 - ............ . ... -.-- ___ __ ___ __ ___ _
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FLxy5.FOR subroutines BESJI
BJOJ2
SURFA
COUC1
COUC2
COUC3
COUC4

FLxy6.FOR --- subroutines TITRE
MODIF
SIMPS

FLxy7.FOR subroutines COMSU
FONC
CCOU1
FONCI
FONC2
FONC3
FONC4
FONC5
FONC6
ECHEF

FL-y8.FOR subroutines IMDON
I MRES

FLxy9.FOR subroutines MENU
ECDON
LEDON
AFDMC
AFDTR
AFPOC

Configuration:

IBM-PC (GXT4AT) with at least 256KB, 1 ou 2 diskette drives,
80 col. screen (monochrome or color), math. coprocessor.
matrix printer.

Running of the program:

I

In the next presentation <ENTER means action of key ---
Insert the EXECUTABLE disk into drive B.

Load DOS, if necessary, then type DIR B: and PATH A:\
FLB> FLxy <ENTER>

Printing of the results:

on screen : FLB> type FLxy.LST <ENTER>
on printer : FLB> type FLxy.LST >prn <ENTER>

Consultation of this notice:

on screen : FLB> type FLxyNO.TXT <ENTER>
on printer : FLB> type FLxyNO.TXT >prn <ENTER>

I - a - .
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Disk preparation for normal running:

Format a system disk with COMMAND.COM, and files needed for

running AUTOEXEC.BAT.
Preparation of CONFIG.SYS with files=lO., device=ansi, bLuffers=1O.

Alterations in source files:

By te'-t editor EDLIN or any other text editor, program

statements. may be altered.

Commands for EDLIN are:
FLB> edlin -xxxn.for E:NENTER>

where file name to be modified (xx,n.for)

nD erase line number n

n displays line n for alteration, type the

correct statement.

n1,n2L displays lines between number n1 and number n2

E -- > ends session and returns to DOS

Compilation:

After alteration, the new version of the module has to be

compi Ied.

Insert Professional fortran compiler into drive A.
FLA>. b: <ENTER -
FLB> path a:\ <ENTER::.

FLB'> profort - /i ENTER>

Linkage:

After correct compilation has taken place, a new executable

program has 'to be created.
Insert diskette with FORTRAN libraries into drive A.

FLB> link FLxy1+FLxy2+. .,FLxy, CON:; ,ENTER

Note

To obtain introduction logo on printer

FLB>'. type FL:yNO.LOG >PRN <ENTER>

|t f
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Presentation of different possible screens:

FD-USAE-vers. 2.00 1986

MAIN MENU scren

Strains and stresses

in USAE-2

a four-layered system.

1. Data retrieval in a file
2. Data saving in a file
3. Screen displaying and/or alteration of system data
4. Screen displaying and/or alteration of traffic data
5. Screen displaying and/or alteration of computation tcoordinates
6. Input of intermediate depths
7. Program start

Your choice- ------ C for stop

Screen of CHOICE 1:

Strains and stresses
in USAE -2

a four-layered system.

Data retrieval in a file.

A FLxy.DAT file contains base data.
The user can define another file whose name nas to be written in

'8 characters (format XXXX.DAT).

Name of chosen file or FLxy.DAT
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Screen of CHOICE 2:

Strains and stresses
in USAE-2

a four-layered system.

Data saving in a file.

A FLxy.DAT file contains base data.
The user can define another file whose name has to be written in
8 characters (format XXXX.DAT).

Name of chosen file or FLxy.DAT

.Screen of CHOICE 3:

Strains and stresses
in USAE -2

a four-layered system.

System data.

Layer Modulus Poisson's r. Thickness Friction ra.

I. 400000.0 0. 16 20.0
1. 0000

2. 100000.0 0.25 20.0
1. 0000

3. 10000.0 0.50 30.0
1. 0000

4. 1000.0 0.50 9000.0

-For return =1 or alter. =2 ----

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Screen of CHOICE 4:

Strains and stresses

in USAE--2
a four-layered system.

Number of circular loads 2

Radius Pressure Dist. x Dist. y

11. 450 7. 900 C). -)C) 0. 00
11.450 7. 900 :4. 350 O. C00

For continuation = 1 or alter. = 2

Screen of CHOICE 5:

Strains and stresses
in USAE-2

a four-layered system.

Number of computation coordinates = 2

X. = y=

0. O0 0. 000
17.175 1 . 0)

For continuation= 1 or alter. = 2 ---

Screen of CHOICE 6:

Strains and stresses
in USAE-2

ca four-layered system.

Positions of stress computations in depth out of interfaces.
(max 22)

number of positions :
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Screen of CHOICE 7:

Strains and stresses
in USAE-2

a four-layered system.

initial computation interval (0.1 is generaly small enough)

Next screen:

Strains and stresses
in USE-2

a four-layered system.

choice of scale

allowed choices
---- thickness of lrst layer

thickness of 2 first layers
-- thickness of 3 first layers

4 - thickness of 4 layers

5 - load radius

suggested solution : 5
your choice

Screen for execution:

Strains and stresses
in USAE-2

a four-layered system.

computation start ..... be patient!'

m 0. 10
be even more patient...
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Screen for results:

Strains and stresses
in USAE-2

a four-layered system.

A file FLxy.LST contains base results.
The user can define another file whose name has to be written in
8 characters (format XXXX.DAT).

Name of chosen file or FLxy.LST

f - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Sample of results (FLxy.LST)

Four-layered system program isotropic - partial friction

USAE-2 departement des constructions
isic
av.de I'hopital, 27 h
7000 eons belgique

Mechanical data

YoungQ s modul us P. s ratio thi -kness fri t icn rat

4 1-000 . 0 C? C 1C)

I~~~~~ ~ ~ ~ -a a ~s reSt

i. 
1 (:(.((..0.0 0.50 3().(_:

traffic data

ioad r adi us pressur e v:

1 11 .450i 7 . 900 (0. (00 0. 000

. 11. 450). 7.90(.) Z4. .5" (9. ((0

tA
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position I X 0.000 y 0.000

depth layer sx sy sl tyz txz txy

0.000 1 t 10.1660 11.6793 7.9000 0.0000 0.0000 0.0000
20.000 1 it -3.4792 -4.5018 1.4988 0.0000 -0.4167 0.0000
20.000 2 it -0.5790 -0.8163 1.4989 0.0000 -0.4166 0.0000
40.000 2 t -2.2733 -2.5873 0.1873 0.0000 -0.0611 0.0000
40.000 3 It -0.1736 -0.1997 0.1873 0.0000 -0.0611 0.0000
70.000 3 it -0.3907 -0.4035 0.0540 0.0000 -0.0046 0.0000
70.000 4 $1 0.0095 0.0082 0.0540 0.0000 -0.0046 0.0000

9070.000 4 U 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

depth layer s s2 sZ epsl eps2 eps3

0.000 1 it 11.6793 10.1660 7.9000 0.2197E-04 0.1758E-04 O.1IOIE-04
20.000 1 it 1.5335 -3.5138 -4.5018 0.7040E-05 -.7597E-05 -.1046E-04
20.000 2 $t 1.5793 -0.6595 -0.8163 0.1948E-04 -,8502E-05 -.I040E-04

40.000 2 U 0.1888 -2.2749 -2.5873 0.1404E-04 -.1675E-04 -.2066E-04
40.000 3I1 0.1973 -0.1836 -0.1997 0.3890E-04 -.1824E-04 -.2066E-04
70.000 3 3t 0.0540 -0.3908 -0.4035 0.4512E-04 -.2160E-04 -.35',E-04
7.000 4 % 0.0545 0.0091 0.0082 0.4582E-04 -.2230E-04 -. 2352E-04

9070.000 4 t 0.0000 0.0000 0.0000 0.O000E+00 O.OOOOE+00 O.OOOOE+O0

depth layer uix) v(y) M(z) ex ey e.

0.000 1 It -.2184E-03 -.1909E-10 -.9046E-02 0.1758E-04 0.2197E-04 0.I1OIE-04
20.000 18I 0.9985E-04 0.8642E-11 -.8835E-02 -.7497E-05 -.1046E-04 0.6939E-05
20.000 2 $8 0.9885E-04 0.8642E-11 -.8835E-02 -.7497E-05 -.1046E-04 0.1848E-04
40.000 2 13 0.3017E-03 0.2637E-10 -.8561E-02 -.1673E-04 -.2066E-04 0.1402E-04
40.000 3 It 0.3017E-03 0.2637E-10 -.8561E-02 -.1673E-04 -.2066E-04 0.3739E-04
70.000 3 33 0.3844E-03 0.3360E-10 -.7432E-02 -.2159E-04 -.2352E-04 0.A5MIE-04
70.000 4 3. 0.3844E-03 0.3360E-10 -.7432E-02 -.2159E-04 -.2352E-04 0.4511E-04

9070.000 4 It 0.O000E00 0.0O000E00 O.OOOOE+00 O.O00E400 0.000K+00 O.OOOOE+O0
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position 2 X 17.175 y 0.000

depth layer sx sy S2 tyz txz txy

0.000 1 to 3.0499 8.8259 0.0000 0.0000 0.0000 0.0000
20.000 1 is -2.0893 -4.3575 1.1255 0.0000 0.0000 0.0000
20.000 2 18 -0.3243 -0.8505 1.1257 0.0000 0.0000 0.0000
40.000 2 It -1.4172 -2.7155 0.1997 0.0000 0.0000 0.0000
40.000 3is -0.18218 -0.2077 0.1997 0.0000 0.0000 0.0000
70.000 3 It -0.4084 -0.4166 0.0554 0.0000 0.0000 0.0000
70.000 4 $1 0.0090 0.0082 0.0554 0.0000 0.0000 0.0000

9070.000 4 It 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

depth layer si s2 S3 epsl eps2 epS3

0.000 1 is 8.8259 3.0499 0.0000 0.11084E-04 0.4094E-05 -.4750E-Oi
20.000 13 1.1255z -2.0893 -4.3575 0.5791E-05 -.3?30E-05 -. 1051E-v4
20.000 21*t 1.1257 -0.3243 -0.8505 0.1419E-04 -.73931E-05 -.105lE-04
40.000 2 It 0. 1997 -2.4172 -21.7155 0.1483E-04 -.1788E-04 -.2l61E-04
40.000 31*t 0.1997 -0.1828 -0.2077 0. 3949E-04 -.1788E-04 -.2161E-04
70.000 3 It 0.0554 -0.4084 -0.4166 0. 4679E-04 -.2278E-04 - .2401E-04
70.000 4 It 0.0554 0.0090 0.0082 0.4679E-04 -. 227BE-04 -.2401E-04

9070.000 4 It 0.0000 0.0000 0.0000 0.OOOOE+00 0.OOOOE+00 O.0000E+00

depth layer u1x) V(y If(,.) ex ey ez

0.000 1 It 0.11272E-18 -. l56SE-10 -.8979E-02 0.4094E-05 0.2084E-04 -.4750E-05
210.000 1 It -. 4354E-19 0.7889E-11 -.8961E-02 -. 3930E-05 -. 1051E-04 0.5492E-05
20.000 2 It -.344BE-18 0.7889E-11 -.8961E-02 -.3931E-05 -.1051E-04 0.1419E-04
40.000 2 Of -.7092E-18 0.1622E-10 -.869BE-02 -.178SE-04 -.2161E-04 0.14843E-04
40.000 3* 1 -.7092E-18 0.1622E-10 -.869SE-02 -.1788E-04 -.2161E-04 0.3949E-04
70.000 3 $1 -.7879E-18 0.1803E-10 -.7520E-02 -.2278E-04 -.2401E-04 0.4679E-04
70.000 48$1 -.7879E-18 0.1803E-10 -.7520E-02 -.2278E-04 -.2401E-04 0.4679E-04

9070.000 4 It 0.0000E+00 0.OOOOE+00 0.OOOOE+00 O.OOOOEtO0O0.OOOOE0 O0.OOOOE+00
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Utilized symbols:

sx : normal stress in the x-direction

sy : normal stress in the y-direction

sz : normal stress in the z-direction

tyz : shear stress in the yz plane, parallel to y or z

txz : shear stress in the xz plane, parallel to x or z

txy : shear stress in the xy plane, parallel to x or y

sl : maximum principal stress

s2 : medium principal stress

s3 : minimum principal stress

epsl : principal strain

eps2 : principal strain

eps3 : principal strain

u(x) : displacement in the x-direction

v(y) : displacement in the y-direction

w(z) : displacement in the z-direction

ex : strain in the x-direction

ey : strain in the y-direction

ez : strain in the z-direction

The normal stresses are taken positive when they produce compression

and negative when they produce tension.


